Nasteona1994
?>

При каких значений х имеет смысл выражения √х^2-2х-35

Алгебра

Ответы

ska67mto3983
Выражение √а имеет смысл при а ≥ 0 => выражение √(х² - 2х - 35) имеет смысл при:
х² - 2х - 35 ≥ 0
★ х² - 2х - 35 = 0
По теореме обратной теореме Виета:
х1 × х2 = -35 ; х1 + х2 = 2 => х1 = -5 ; х2 = 7
★ (х + 5)(х - 7) ≥ 0
Отметим на координатной прямой точки -5 и 7 (эти точки будут закрашенными).
———[-5]———[7]———>
Затем подставим в неравенство значение из каждого из трёх промежутков и согласно знаку полученного числа получим следующую последовательность:
+ ; - ; + .Таким образом, решением данного неравенства будет х, принадлежащий объединению промежутков (-∞ ; -5] и [7 ; +∞).
ответ: выражение √(х² - 2х - 35) имеет смысл при х, принадлежащем объединению промежутков
(-∞ ; -5] и [7 ; +∞).
zoocenterivanoff51
1)На графике у тебя парабола нарисована. Чертишь прямую у = -1 и рассматриваешь ту часть графика, которая оказывается над этой прямой. Вот вся та часть и есть решение. Запиши интервал для х, который соответствует той части графика и это будет ответ.
ДА. Так как знак больше иои РАВНО, то концы интервала будут включены. (квадратные скобочки)
2)
3)Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными)
4)-
5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения.
Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет!!
( Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения)
7)

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.

ilplakhotin8734

Объяснение:

а)12+6x>0

  6x> -12

  x> -2

б)2x-5<1

  2x<1+5

  2x<6

  x<3

в)10-5x> -5

  -5x> -5-10

  -5x>-15

    x<3  знак меняется

г)2x-7<2+x

  2x-x<2+7

   x<9

Системы неравенств:

а)3x-9<x+1

-5x<21+2x

 3x-x<1+9

-5x-2x<21

 2x<10

 -7x<21

 x<5

 x> -3  знак меняется

Решение системы неравенств: -3<x<5 (от -3 до 5)

б)3x-9<0

  5x+2>0

  3x<9

  5x> -2

   x<9

   x> -2/5

Решение системы неравенств: -2/5<x<3  (от -2/5 до 3)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каких значений х имеет смысл выражения √х^2-2х-35
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

marat7
beliaeva2
ev89036973460
a8227775
slava-m-apt
ba5-m
Маргарита794
Никита_Тузов
i7aster26
orbbsvsupply
nikitamihailov22095010
Svetlaru70
panstel
Deniskotvitsky6422
kattarina71