Объяснение:
Показательной функцией назыввается функция вида y = ax, где a > 0 и a ≠ 1. График функции имеет следующий вид: Рассмотрим свойства функции: Областью определения функции является множество всех действительных чисел R. Множеством значений функции являются все положительные числа, т. е. промежуток E(y): (0; +∞). Наименьшего и наибольшего значений функция не имеет. Функция не является ни нечетной, ни четной.Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.
Поделитесь своими знаниями, ответьте на вопрос:
y = e^(x+1) + 4*√(x + 5) - 1
Запишем уравнение касательной в общем виде:
y = y₀ + y'(x₀)(x - x₀)
По условию задачи x₀ = 0, тогда:
y₀(0) = e^(0+1) + 4*√(0 + 5) - 1 = e + 4√5 - 1
Теперь найдем производную:
y` = e^(x+1) + 4/(2√(x+5)) = e^(x+1) + 2/√(x+5)
следовательно:
y`(x₀) = y`(0) = e + 2/√5
В результате имеем:
y = e + 4√5 - 1 + (e + 2/√5)*(x - 0) = e + 4√5 - 1 + e*x + 2x/√5 =
= e + 4√5 - 1 + e*x + (2√5 * x) / 5
y = e + 4√5 - 1 + e*x + (2√5 * x) / 5 - искомое уравнение касательной