D.Yu. Polina1703
?>

Найдите значение выражения х(х-у)-у(у2-х) при х=4 и у=2

Алгебра

Ответы

sawa-msk
4(4-2)-2(2*2-4)=4*2-2(4-4)= 8-2*0=8-0=8
Грудинин604
5у² + у + у³ + 5 = у²(5 + у) + (5 + у) = (у² + 1)(5 + у)
у³ - 4 + 2у - 2у² = у²(у - 2) + 2(у - 2) = (у² + 2)(у - 2)
7с² - с - с³ + 7 = с²(7 - с) + (7 - с) = (с² + 1)(7 - с)
х³ + 28 - 14х² - 2х = х(х² - 2) - 14(х² - 2) = (х - 14)(х² - 2)
16ab² + 5b²c + 10c³ + 32ac² = 16a(b² + 2c²) + 5c(b² + 2c²) = (16a + 5c)(b² + 2c²)
20n² - 35a - 14an + 50n = 10n(2n + 5) - 7a(2n + 5) = (10n - 7a)(2n + 5)
40a³bc + 21bc - 56ac² - 15a²b² = 5a²b(8ac - 3b) - 7c(8ac - 3b) = (5a²b - 7c)(8ac - 3b)
16xy² - 5y²z - 10z³ + 32xz² = 16x(y² + 2z²) - 5z(y² + 2z²) = (16x - 5z)(y² + 2z²)
imosal

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение выражения х(х-у)-у(у2-х) при х=4 и у=2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lider123
козлов
Артур1807
Kelena190533
zdl2008
is490
Isaeva_Marin1010
annazhurawlewa
dksvetlydir
maximovpavel9114
vlebedeva81
Кириллов57
verich
kuhonka2021
oledrag7