Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
yuklimochkina3
30.06.2022
Если исходное число равно A, то число, большее на 1, равно A + 1, а новое шестизначное число равно 1000A + (A + 1) = 1001A + 1. 1001A + 1 должно быть полным квадратом.
100 <= A <= 998, поэтому 100101 <= n^2 <= 998999, 317 <= n <= 999.
1001 = 7 * 11 * 13. Поскольку n < 1000, n - 1 или n + 1 не могут делиться на все три числа одновременно, перебираем варианты.
1) n - 1 делится на 7, n + 1 делится на 11 * 13 = 143. n + 1 = 143k, k < 7 n - 1 = 143k - 2 = 140k + (3k - 2) делится на 7, т.е. 3k - 2 делится на 7. Перебором находим k = 3, n = 143 * 3 - 1 = 428. n^2 = 183184, A = 183
2) n - 1 делится на 11, n + 1 делится на 7 * 13 = 91. n + 1 = 91k, k < 11 n - 1 = 91k - 2 = 88k + (3k - 2) делится на 11, т.е. 3k - 2 делится на 11. Перебором находим k = 8, n = 91 * 8 - 1 > 428
3) n - 1 делится на 13, n + 1 делится на 7 * 11 = 77. n + 1 = 77k, k < 13 n - 1 = 77k - 2 = 78k - (k + 2), k + 2 делится на 13, откуда k = 11. n = 77 * 11 - 1 > 428
4) n + 1 делится на 7, n - 1 делится на 143 n - 1 = 143k, k < 7 n + 1 = 143k + 2 = 140k + (3k + 2), 3k + 2 делится на 7, k = 7 - 3 = 4. n = 143 * 4 + 1 > 428
5) n + 1 делится на 11, n - 1 делится на 91. n - 1 = 91k, k < 11 n + 1 = 88k + (3k + 2), 3k + 2 делится на 11, k = 11 - 8 = 3 n = 91 * 3 + 1 = 274 < 317, не подходит
6) n + 1 делится на 13, n - 1 делится на 77. n - 1 = 77k, k < 13 n + 1 = 78k - (k - 2), k - 2 делится на 13, k = 13 - 11 = 2 n = 77 * 2 + 1 = 155 < 317, не подходит.
ответ. 183
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Відомо, що х1 і х2 - корені рівняння 4х^2-5х-13=0. знайдіть значення виразу х1*х2-2х1-2х2