1) Sin^4 x - Cos^4 x =1 (Sin² x - Cos² x)( Sin²x + Cos²x ) = 1 Sin ² x - Cos² x = 1 -Cos 2x = 1 Cos 2x = -1 2x = π + 2πk, k ∈Z x = π/2 + πk, k ∈z 2) √3Sin 2x + Sin² x - Cos ²x = 0 2√3 Sin x Cos x +Sin² x - Cos² x = 0 | :Cos² x 2√3 tg x + tg² x -1 = 0 Решаем как квадратное D = 1 + 8√3 tg x = (-1 +- √1 + 8√3)/4√3 3) 6Сos x +1 = 4(2Сos² x - 1) 6 Cos x + 1 - 8 Cos² x +4 = 0 -8Cos ² x + 6Cos x +5 = 0 решаем по чётному коэффициенту: Сos x = (-3 +-√49)/-8 = (-3 +- 7)/-8 а) Cos x = 10/8 б) Cos x = =-1/2 нет решений х = +- arcCos ( -1/2) + 2πк, к∈Z x = +- 2π/3 + 2πk, k ∈Z