1) Cosx = t
6t² + t -1 = 0
D = b² -4ac = 1 - 4*6*(-1) = 25 > 0
t₁ = (-1+5)/12 = 4/12 = 1/3
t₂ = (-1 -5)/12 = -1/2
a) Cosx = 1/3 б) Сosx = -1/2
x = +-arcCos(1/3) + 2πk , k ∈Z x = +-arcCos(-1/2) + 2πn , n ∈Z
x = +- 2π/3 +2πn , n ∈ Z
2) учтём, что Cosx = 2Cos²x/2 -1
наше уравнение:
Cosx/2 = 1 + 2Cos²x/2 -1
Cosx/2 = t
2Cos²x/2 - Cosx/2 = 0
Cosx/2(2Cosx/2 -1) = 0
Cosx/2 = 0 или 2Cosx/2 -1 = 0
x/2 = π/2 + 2πk , k ∈Z Cosx/2 = 1/2
x = π + 4πk , k ∈ Z x/2 = +-arcCos(1/2) + 2πn , n ∈ Z
x/2= +- π/3+ 2πn , n ∈ Z
x = +-2π/3 + 4 πn , n ∈ Z
2sin2x + 3sinxcosx - 3cos2x = 1;
Представим 1 в виде суммы по основному тригонометрическому тождеству:
sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;
Приведем подобные:
sin2x + 3cosxsinx - 4cos2x = 0;
Разделим каждый член уравнения на cos2x:
tg2x + 3tgx - 4 = 0;
Произведем замену и решим квадратное уравнение:
t2 + 3t - 4 = 0;
D = 9 + 16 = 25;
t = (-3 +- 5)/2;
t1 = -4, t2 = 1;
Сделаем обратную замену:
tgx = 1; x = pi/4 + pin, n из Z;
tgx = -4; x = arctg(-4) pin, n из Z.
ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.
Объяснение:
Оцени!
Поделитесь своими знаниями, ответьте на вопрос:
Тема: дроби пример: 3t-p2(2-степень)/t2(2- степень) : является ли дробью выражение.