В) (2х-3)/(2х^2+10х)=(2х-3)/(2х(х+5)), где х не равен 0 д) (в+3)/(в^2-6в+9)=(в+3)/(в-3)(в-3), где в не равен 3 е) (2н-5)/(4н^2+4н+1)=(2н-5)/(2н+1)(2н+1), х не равен -0.5
alukyanov
24.04.2023
Приводим дроби к общему знаменателю. Общий знаменатель 2x·(х-3)·(х-3)·(х+3) Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)² Получим: Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0. Приравниваем к нулю числитель 6x² - 18x - 2x² -6x-3x²+18x-27=0, x² - 6x - 27 = 0 D=(-6)² - 4·(-27)=36+108 =144 = 12² x₁=(6-12)/2=-3 или х₂=(6+12)/2=9 Так как знаменатель не должен быть равным нулю, то это означает, что х≠0, х≠3, х≠ -3 Поэтому х₁ = - 3 не является корнем уравнения ответ. х=9
andrewshilin1334
24.04.2023
Примем процентное содержание воды во втором растворе за х, а количество первого раствора за y. Количество воды, получаемое при смешивании, равняется количеству воды, содержащемуся в двух растворах. Тогда получаем систему: Умножаем первое уравнение почленно на 3: Вместо первого уравнения записываем разность первого и второго уравнений. Второе уравнение оставляем без изменений. ответ: было взято 0,5 л первого раствора.
Формула сложных процентов: Pn = P₀(1+m)^n, где Pn -- сумма вклада через n лет; P₀ -- первоначальная сумма вклада; m -- часть от первоначальной суммы вклада, которую составляет ежегодная прибыль по вкладу. Тогда: P₂ - P₀ = P₀(1+m)² - P₀ = P₀(1+2m+m²) - P₀ = P₀(2m+m²) = 60000 P₃ - P₂ = P₀(1+m)³ - P₀(1+m)² = P₀(1+3m+3m²+m³) - P₀(1+2m+m²) = P₀(m+2m²+m³) = 49000 Т. е., получаем систему: P₀·m(2+m) = 60000 (*) P₀·m(1+2m+m²) = 49000 Делим первое уравнение на второе, получаем: (2+m)/(1+2m+m²) = 60/49 98+49m = 60+120m+60m² 60m²+71m-38 = 0 D = 71²-4·60·(-38) = 14161 = 119² m₁ = = m₂ = = = 0,4 m должно быть положительным. Поэтому m = 0,4. Чтоб найти P₀, подставляем полученное значение m в уравнение (*): P₀·0,4(2+0,4) = 60000 P₀·0,4·2,4 = 60000 0,96·P₀ = 60000 P₀ = 60000/0,96 = 62500 ответ: первоначальная сумма вклада равна 62500.
д) b+3= -3,0
e) 2n-5=5/2,0
2x^2+10x b^2-6b+9 4n^2+4n+1= 2(3072-3b+47n)