Короче, вся задача сводится к поиску наименьшего такого значения a, так как наименьшему a соотвевствует наименьший x. Итак, путём нехитрых арифметических операция, получим, что x<=a*1000/465 и x>=a*1000/475. Теперь вся суть задачи сводится к нахождению "наилучших" делителей для тысячи в знаменателе, ведь именно тогда мы сможем найти a-наименьшее. Обобщая получим, что нам надо получить "наилучшее" деление от 10^n при x<=475*10^(n-3) и x>=(465*10^(n-3)). Предположим, что мы смогли подобрать такой x в данном диапазоне равный x=5^k*2^i. Это невозможно так как тогда бы минимальным числом а был бы 1 и мы бы получили, что x>0, что не имеет смысла. Теперь предположим, что x=5^k*2^i*3. Тогда мы можем представить x как 4*10^(n-3)+ Очевидно, что на 10^(n-3) делится как 5^k, так и 2^i, то есть, если x действительно делится на 5^k или 2^i, то также должна делиться и часть икса, которая заменена у меня точками. Это значит, что в конце мы получим число 4*10^(n-3-i)+<любое число, не кратное 5>, или 4*10(n-3-k)+<любое число, не кратное 2>, что никогда не равно 3 так как 4>3. Теперь посмотрим, что будет, если мы найдем такое x, что x=5^k*2^i*7. Отсюда следует, что минимальное a равное 7, то есть 0.475x>=7. x>=14.7 то есть x>=15. Подставив, видим, что это правильный ответ
ответ: 15
Поделитесь своими знаниями, ответьте на вопрос:
( x - 1)^2 - 4 = 4 - ( 1 - x)^2 или ( x - 1)^2 - 4 = - (4 -(1 - x)^2)
x^2 - 2x + 1 - 4 = 4 -(1 - 2x+x^2) x^2-2x+1-4= -(4 -(1-2x+x^2)
x^2 - 2x - 3 - 3 - 2x + x^2=0 x^2-2x-3=- (3+2x-x^2)
2x^2 - 4x - 6 = 0 x^2 - 2x-3= - 3 - 2x + x^2
x^2 - 2x - 3= 0 x^2 - x^2 - 2x+ 2x = - 3+3
D = b^2 - 4ac = 4+12=16 0x = 0 - имеет бесконечное множество
x1 = (2 + 4)/2 = 3 решений
x2 = ( 2 - 4)/ 2 = - 1