Перемножим 25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4 попробуем выделить полный квадрат в него явно входит 5a^2 и x^2 Но при наличии только этих двух слагаемых результирующий многочлен не имел бы а и х в третьей степени. Значит, есть ещё что-то. Обозначим это нечто как z (5a^2 +z+ x^2 )^2-(25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4)= z^2 + 2 x^2 z + 10 a^2 z - 50 a^3 x - 25 a^2 x^2 - 10 a x^3 =0 Решим это квадратное уравнение относительно z корня два z = 5 a x и второй z = -10 a^2 - 5 a x - 2 x^2 второй не интересен :) ответ (5 a^2 + 5 a x + x^2)^2 - квадрат исходного выражения
neblondinka19
03.04.2023
На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля. 2 + 1 = 3 кг сплава.
Первая шахта: 60 рабочих; 5 рабочих часов в день; 2 кг алюминия или 3 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 60*5 = 300 часов. 1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля. Для 3 кг сплава требуется 1/3 часа на добычу 1 кг никеля и 1 час на добычу 2 кг алюминия. 1 час + 1/3 часа = часа.
Пропорция часа - 3 кг сплава 300 часов - Х кг сплава кг сплава ------------------------------------------ Вторая шахта: 260 рабочих, 5 рабочих часов в день, 3 кг алюминия или 2 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 260*5 = 1300 часов. 1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля. 1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия. Для 3 кг сплава требуется 1/2 часа для добычи 1 кг никеля и 1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия. 1/2 часа + 2/3 часа = часа.
Пропорция часа - 3 кг сплава 1300 часов - Х кг сплава кг сплава
Обе шахты могут обеспечить завод металлом для получения кг сплава
ответ: кг сплава.
krikatiy
03.04.2023
Разложим данный многочлен на множители a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод: многочлен а³+3а²+2а кратен числу 6.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
(x+a)(x+2a)(x+3a)(x+4a)+a^4 доказать что это полный квадрат