Голубева1440
?>

Вычислите периметр и площадь прямоугольника стороны которого равны 2, 4 и 4, 6 см

Алгебра

Ответы

oniks-plus
Периметр: (2,4+4,6):2 = 7:2 = 3,5
Площадь: 2,4 * 4,6 = 11,04
Svetlana395

y = x^{2} + 3x + 4

Найдем уравнение касательной, проходящей через точку с абсциссой x_{0} = -2

Для этого найдем производную данной функции:

y' = (x^{2} + 3x + 4)' = 2x + 3

Найдем значение функции в точке с абсциссой x_{0} = -2:

y(-2) = (-2)^{2} + 3 \cdot (-2) + 4 = 4 - 6 + 4 = 2

Найдем значение производной данной функции в точке с абсциссой x_{0} = -2:

y'(-2) = 2 \cdot (-2)+ 3 = -4 + 3 = -1

Уравнение касательной имеет вид:

y = f'(x_{0})(x - x_{0}) + f(x_{0})

Подставим значение f'(x_{0}) = -1, \ f(x_{0}) = 2, \ x_{0} = -2

y = -(x + 2) + 2 = -x - 2 + 2 = -x

Итак, уравнение касательной заданной функции: y = -x

Воспользуемся геометрическим смыслом касательной: коэффициент наклона k касательной y = kx + b численно равен тангенсу угла наклона \text{tg} \ \alpha  с положительным направлением оси Ox

В найденной касательной коэффициент k = -1, следовательно, \text{tg} \ \alpha = -1 при \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

ответ: \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

dokmak140652

За интеграл я буду Июиспользовать вот этот знак:

\gamma

4 пример:

1) Перепишите дробь:

\gamma - \frac{1}{x} + \frac{2}{x + 6} dx

2) Использовать свойства интегралов:

- \gamma \frac{1}{x} dx + \gamma \frac{2}{x + 6} dx

3) Вычислить интегралы и прибавить константу интегрирования С:

- ln( |x| ) + 2 ln( |x + 6| ) + c

5 пример:

1) Найти неопределённый интеграл:

\gamma x \sqrt{x + 8} dx

2) Упростить интеграл, используя метод замены переменной:

\gamma t \sqrt{t} - 8 \sqrt{t} dt

3) Преобразовать выражения:

\gamma t \times {t}^{ \frac{1}{2} } - 8 {t}^{ \frac{1}{2} } dt

4) Вычислить произведение:

\gamma {t}^{ \frac{3}{2} } - 8 {t}^{ \frac{1}{2} } dt

5) Использовать свойство интегралов:

\gamma {t}^{ \frac{3}{2} } dt - \gamma 8 {t}^{ \frac{1}{2} } dt

6) Вычислить интегралы:

\frac{2 {t}^{2} \sqrt{t} }{5} - \frac{16t \sqrt{t} }{3}

7) Выполнить обратную замену:

\frac{2 {(x + 8)}^{2} \times \sqrt{x + 8} }{5} - \frac{16(x + 8) \sqrt{x + 8} }{3}

8) Упростить выражение:

\frac{2 \sqrt{x + 8} \times ( {x}^{2} + 16x + 64) }{5} - \frac{16(x + 8) \sqrt{x + 8} }{3}

9) Вернуть пределы интегрирования и подставить в пример (8):

\frac{2 \sqrt{8 + 8} \times ( {8}^{2} + 16 \times 8 + 64) }{5} - \frac{16(8 + 8) \sqrt{8 + 8} }{3} - ( \frac{2 \sqrt{1 + 8} \times ( {1}^{2} + 16 \times 1 + 64)}{5} - \frac{16(1 + 8) \sqrt{1 + 8} }{3} ) = \frac{1726}{15}

6 пример

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите периметр и площадь прямоугольника стороны которого равны 2, 4 и 4, 6 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Марина_Мария
milaudina
iqtoy2010
Борисовна_Кашутина
igor8809337
Vladimirovna Yevtodeva
ribanina
sancity997124
Maksimova-Shorokhov303
nane2924329
Vyacheslavovna240
Valentinovna
peresvetoff100015
iriska-669
Tyukalova