ответ: 24 см и 12 см.
Объяснение:
Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
(a-b)/2=6
(a+b)/2=18
или:
a-b=12
a+b=36
Решая её, находим a=24 см и b=12 см.
x ≤ 0,75
Объяснение:
{-х² + 6х - 8 < 0 → {x² -6x + 8 > 0 → {x² - 2x - 4x + 8 > 0
{4x - 3 ≤ 0 → {4x ≤ 3 → x ≤ 3/4 → {x ≤ 0,75
{x( x - 2) - 4(x - 2) > 0 → {(x - 4)(x- 2) > 0
{ x ≤ 0,75 { x ≤ 0,75
Уравнение (x - 4)(x- 2) > 0 в 2-х случаях:
1) {x - 4 > 0 → x > 4
{ x - 2 > 0 → x > 2
Общее решение x > 4, но оно не удовлетворяет 2-ому условию системы: x ≤ 0,75 . Значит, оно не подходит.
2) {x - 4 < 0 → x < 4
{ x - 2 < 0 → x < 2
Общее решение: x < 2
3) {x < 2
{x ≤ 0,75
ответ: x ≤ 0,75
Поделитесь своими знаниями, ответьте на вопрос:
Найдите область определения выражения: 9/y
Пусть f(y) = 9/y
y ≠ 0, т.к. y - знаменатель
Значит, D(f) = (-∞; 0) U (0; +∞).
ответ: D(f) = (-∞; 0) U (0; +∞).