vintazhvintazh90
?>

Найти максимальное и минимальное значение функции f(x)=-x^3+3*x*|x-3| на промежутке [0: 4]

Алгебра

Ответы

oskar-pn
F(x) = -x³ + 3x|x - 3|
1) x ≥ 3
f(x) = -x³ + 3x² - 9x
f'(x) = -3x² + 6x - 9
f'(x) ≥ 0
-3x² + 6x - 9 ≥ 0
3x² - 6x + 9 ≤ 0
x² - 2x + 3 ≤ 0
x² - 2x + 1 ≤ -2
(x - 1)² ≤ -2 - неверное неравенство ⇒ на промежутке [3; +∞) функция убывает
2) x ≤ -3
f(x) = -x³ - 3x² + 9x
f'(x) = -3x² - 6x + 9
f'(x) ≥ 0
-3x² - 6x + 9 ≥ 0
x² + 2x - 3 ≤ 0
x² + 2x + 1 - 4 ≤ 0
(x + 1)² - 2² ≤ 0
(x + 1 - 2)(x + 1 + 2) ≤ 0
(x - 1)(x + 3) ≤ 0
        уб                               воз                                 уб
[-3][1]> x
         +        min                  -                     max              +
Значит, функция убывает на (-∞; -3] и на [1; +∞) (объединяем найденный промежуток в 1 пункте с данным промежутком) и возрастает на [-3; 1].
x₀ = 1 - точка максимума
ymax = y(1) = -1 + 3·1·|1 - 3| = -1 + 3·2 = -1 + 6 = 5.
Точка минимума в промежуток не входит, поэтому ищем значения функции в крайних точках:
y(0) = 0 + 0 = 0
y(4) = -4³ + 3·4·|4 - 3| = -64 + 12·1 = 12 - 64 = -52
ответ: ymax = 5; ymin = -52.
vitbond12

Зная автора задания как специалиста (в частности) в области геометрии, после первых неудачных попыток сделать эту задачу я подумал о возможности применить геометрию, после чего появилась надежда на успех.

Во-первых, мы можем считать, что x > 0 (если x<0, то y(x)>y(-x), то есть при отрицательном x наименьшее значение достигаться не может. Значение y(0)=6 пока просто запомним).

Пусть x>0 - некоторое число. Рассмотрим два . треугольника, один со сторонами  2 и x и углом в 30° между ними, второй - со сторонами 4 и x и углом в 90° между ними. Совместив их по стороне, равной x, получим 4-хугольник ABCD со сторонами  AB=2, BC=4, диагональю BD=x и углом ABC, который диагональ BD делит на углы ABD=30° и DBC=90°. По теореме косинусов

AD^2=4+x^2-2\cdot 2\cdot x\cdot \cos 30^{\circ}=4+x^2-2x\cdot \sqrt{3};

DC^2=x^2+16.

Поэтому y(x) при положительном x - это сумма сторон AD и DС. Меняя x, мы меняем  вершину D, двигая ее  по лучу с вершиной B (при неподвижных A, B и C). Ясно, что сумма будет минимальной, когда четырехугольник ABCD вырождается (это когда D лежит на AC), и равна стороне AC,

AC^2=4+16-2\cdot 2\cdot 4\cdot \cos 120^{\circ}=28;\ AC=2\sqrt{7}.

Поскольку y(0)=62\sqrt{7}, ответом в задаче будет 2\sqrt{7}.

Замечание. Значение в нуле в принципе мы могли не вычислять, считая, что при этом получается вырожденный четырехугольник с нулевой диагональю.

praskovya17
Есть правило нахождении предела отношения дробно-рациональной функции при  х---> к бескон.Если многочлен в числителе имеет степень, равную степени многочлена в знаменателе, то предел равен отношению коэффициентов перед СТАРШИМИ степенями.Доказывается это с деления числителя и знаменателя на старшую степень и учёта того, что константа, делённая на бесконечно большую велмчину равна 0 (беск.малой величине).
В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:

lim_{x\to \infty }\frac{x+1}{x-2}=lim_{x\to \infty }\frac{\frac{x}{x}+\frac{1}{x}}{\frac{x}{x}-\frac{2}{x}}=lim\frac{1+\frac{1}{x}}{1-\frac{2}{x}}=[\frac{1+0}{1-0}]=\frac{1}{1}=1

Конечно, удобнее пользоваться готовым правилом.

2)\; \; lim_{x\to \infty}\frac{x-4}{x+3}=\frac{1}{1}=1\\\\3)\; \; lim_{x\to \infty}\frac{7x+9}{6x-1}=\frac{7}{6}

Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0.
Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности.
Например:

lim_{x\to \infty }\frac{x+3}{5x^2+2x-5}=0,tak\; \; kak\\\\lim_{x\to \infty }\frac{\frac{x}{x^2}+\frac{3}{x^2}}{\frac{5x^2}{x^2}+\frac{2x}{x^2}-\frac{5}{x^2}}=lim\frac{\frac{1}{x}+\frac{3}{x^2}}{5+\frac{2}{x}-\frac{5}{x^2}}=[\frac{0+0}{5+0-0}]=\frac{0}{5}=0

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти максимальное и минимальное значение функции f(x)=-x^3+3*x*|x-3| на промежутке [0: 4]
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

dksvetlydir
nopel91668
andrewa
artemkolchanov24
Astrians
medvik
Михеев557
Джулия
karkh267
Vladimirovich Aleksandr1889
Анна1169
marimelons795
irinaastapova2011
fitzhu