Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√3 = √а
(3√3)² = (√а)²
9*3 = а
а=27;
b) Если х∈[9; 25], то какие значения будет принимать данная функция?
у= √х
у=√9=3;
у=√25=5;
При х∈ [9; 25] у∈ [3; 5].
с) y∈ [14; 23]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
23 = √х
(23)² = (√х)²
х=529;
При х∈ [196; 529] y∈ [14; 23].
d) Найдите при каких х выполняется неравенство у ≤ 4.
√х <= 4
(√х)² <= (4)²
х <= 16;
Неравенство у ≤ 4 выполняется при х <= 16.
Поделитесь своими знаниями, ответьте на вопрос:
Решить степень сокращённого умножения 25х^4 -16y^2 заранее
25х⁴ - 16у² = (5х²)² - (4у)² = (5х² - 4у)(5х² + 4у)