hbqhzwtd
?>

1)lim 3x / (корень из (5-x) - корень из (5+x)) при x стремящемся к 0 2)lim (1/(x-2) - 4/(x^2-4)) при x стремящемся к 2 3)lim arcsin5x/(x^2-x) при x стремящемся к 0 4)lim ((1-x)/(2-x))^3x при x стремящемся к бесконечности

Алгебра

Ответы

maryariazantseva
1) Неопределённость 0/0 раскрываем умножением числителя и знаменателя на выражение, сопряжённое знаменателю, т.е. на \sqrt{5-x} + \sqrt{5+x}
\lim_{n \to \inft0} \frac{3x}{\sqrt{5-x} - \sqrt{5+x}} =\lim_{n \to \inft0} \frac{3x*(\sqrt{5-x} + \sqrt{5+x})}{(\sqrt{5-x} - \sqrt{5+x})*(\sqrt{5-x} + \sqrt{5+x})} =
В знаменателе разложение разности квадратом, используем это:
=\lim_{n \to \inft0} \frac{3x*(\sqrt{5-x} + \sqrt{5+x})}{(5-x) - (5+x)} =\lim_{n \to \inft0} \frac{3x*(\sqrt{5-x} + \sqrt{5+x})}{-2x} =
Сокращаем:
=- \frac{3}{2} \lim_{n \to \inft0} (\sqrt{5-x} + \sqrt{5+x}) =- \frac{3}{2} (\sqrt{5-0} + \sqrt{5+0})=
=- \frac{3}{2} (\sqrt{5-0} + \sqrt{5+0})=- \frac{3}{2}* 2\sqrt{5}=-3\sqrt{5}

2) Неопределённость (∞-∞) раскрываем, приводя к общему знаменателю:
\lim_{n \to \inft2} ( \frac{1}{x-2} - \frac{4}{ x^{2} -4})= \lim_{n \to \inft2} \frac{x+2-4}{(x-2)(x+2)} =\lim_{n \to \inft2} \frac{x-2}{(x-2)(x+2)} =
Сокращаем:
=\lim_{n \to \inft2} \frac{1}{x+2} = \frac{1}{2+2} = \frac{1}{4}

3) Неопределённость 0/0 раскрываем по первому замечательному пределу, вернее по одному из следствий из него, а именно: \lim_{n \to \inft0} \frac{arcsinx}{x} =1
\lim_{n \to \inft0} \frac{arcsin5x}{ x^{2} -x}=\lim_{n \to \inft0} \frac{arcsin5x}{ x(x-1)}=\lim_{n \to \inft0} \frac{1}{x-1} * \lim_{n \to \inft0} \frac{arcsin5x}{ x}=
Знаменатель разложили на множители, затем по свойству предел произведения равен произведению пределов, разбили на 2 предела:
=-1 * \lim_{n \to \inft0} \frac{5*arcsin5x}{5 x}=
Первый предел равен минус единице, второй приводим к первому замечательному пределу домножением на 5 числителя и знаменателя.
=-1 *5* \lim_{n \to \inft0} \frac{arcsin5x}{5 x}=-1*5*1=-5

4) Неопределённость 1 в степени ∞ раскрывается с второго замечательного предела. Но сначала путём преобразований приведём к виду, когда его можно будет применить.
В числителе добавили и вычли 1, затем сгруппировали и разделили.
\lim_{n \to \infty} ( \frac{1-x}{2-x} ) ^{3x} = \lim_{n \to \infty} (\frac{(2-x)-1}{2-x} ) ^{3x} = \lim_{n \to \infty} ( 1-\frac{1}{2-x} ) ^{3x} =
Потом поменяли знак второго слагаемого
= \lim_{n \to \infty} ( 1+\frac{1}{x-2} ) ^{3x} =
Сделаем замену t=1/(x-2), при этом t →0 и  x= \frac{1}{t} +2
= \lim_{n \to \infty} ( 1+t) ^{3*( \frac{1}{t} +2)}=\lim_{n \to \infty} ( 1+t) ^{ \frac{3}{t} +6}=
Отделим целочисленную степень (6):
=\lim_{n \to \infty} ( 1+t) ^{6}*( 1+t) ^{ \frac{3}{t}}=lim_{n \to \infty} ( 1+t) ^{6}*lim_{n \to \infty} ( 1+t) ^{ \frac{3}{t}}=
Разбили на произведение пределов, первый из которых равен 1, второй по второму замечательному пределу:
=1*lim_{n \to \infty} (( 1+t) ^ \frac{1}{t} )^3=(lim_{n \to \infty} ( 1+t) ^ \frac{1}{t} )^3=
Сначала можно вычислить предел, а затем возвести его в степень:
=(e )^3=e ^{3}
Давид-Александр
А) x^3 + x^2 + x + 2 - на множители не раскладывается.
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)

б) 4x - 4y + xy - y^2 =  4(x - y) + y(x - y) = (4 + y)(x - y)
Galina
1) В точке касания значение функций двух линий равны:
х² + кх + 1 = х - 3
х² + кх - х + 1 + 3 = 0
х² + (к-1)х + 4 = 0.
Чтобы корень полученного квадратного уравнения был один, то дискриминант должен быть равен 0.
Д = в² - 4ас = (к - 1)² - 4*1*4 =к² - 2к -15 = 0.
Квадратное уравнение, решаем относительно k: 
Ищем дискриминант:D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;
Дискриминант больше 0, уравнение имеет 2 корня:
k_1=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5;
k_2=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.

При полученных значениях к парабола у = х² + кх + 1 касается прямой у = х - 3.
Найдите значение параметра к,при котором y1 и y2 касаются.найти координаты точки касания а)y1=x-3 y2
Найдите значение параметра к,при котором y1 и y2 касаются.найти координаты точки касания а)y1=x-3 y2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1)lim 3x / (корень из (5-x) - корень из (5+x)) при x стремящемся к 0 2)lim (1/(x-2) - 4/(x^2-4)) при x стремящемся к 2 3)lim arcsin5x/(x^2-x) при x стремящемся к 0 4)lim ((1-x)/(2-x))^3x при x стремящемся к бесконечности
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Стефаниди
ylia89
ann328389
o-kate17
eleniloy26
myglassi26
Джамалутдинова Докучаев
Karmelita1978
lyubavalev8
muzeynizhn
Алена
MelnikovaIvanovna
prik-galina7390
denspiel
sergeykvik13