ответ
а) -3х2 (-х3 + х - 5) = 3х2 • х3 - 3х2 • x + 3х2 • 5 = 3х5 - 3х3 + 15х2;
б) (1 + 2а - а2) • 5а = 1 • 5a + 2a • 5a - а2 • 5a = 5a + 10а2 - 5a3;
в) 2/3 x2y(15x - 0,9y + 6) = 2/3x2y • 15x - 2/3x2y • 0,9у + 2/3x2y • 6 = 10x3y - 0,6x2y2 + 4х2y;
г) 3а4x(а2 - 2ах + х3 - 1) = За4х • а2 - За4х • 2ах + + За4х • х3 - За4х • 1 = За6х - 6а5х2 + За4х4 - За4х;
д) (х2у - ху + ху2 + у3) • Зху2 = х2у • Зху2 - ху • Зху2 + ху2 • Зху2 + y3 • Зху2 = Зx3y3 - Зx3y3 + Зх2у4 + Зху5;
е) -3/7а4(2,1b2 - 0,7а + 35) = -3/7а4 • 2,1b2 + 3/7а4 • 0,7а - 3/7а4 • 35 = -0,9а4b2 + 0,3а5 - 15а4.
В решении.
Объяснение:
Функция задана формулой у=½х(одна вторая икс)+4
А) найдите значение функции, если значение аргумента равно -8
Б) найдите значение аргумента при котором значение функции равно -0,5
В) проходит ли график этой функции через точку А(4;7)?
Дана функция у = х/2 + 4
а) х = -8; у = ?
у = -8/2 + 4
у = -4 + 4
у = 0;
При х = -8 у = 0.
б) у = -0,5; х = ?
-0,5 = х/2 + 4
Умножить уравнение на 2, чтобы избавиться от дроби:
-1 = х + 8
-1 - 8 = х
х = -9;
При х = -9 у = -0,5.
в) у = х/2 + 4; А(4; 7);
7 = 4/2 + 4
7 ≠ 6, не проходит.
Поделитесь своими знаниями, ответьте на вопрос:
:мотоциклист проехал 40 км из точки а в точку б и вернулся назад, на обратном пути он ехал на 10 км меньше по сравнению с начальной , и потратил на 20 минут больше , чем из пункта а в пункт б , найти начальную скорость мотоциклиста
40 / x = 40 / (x - 10) - 1/3
- 10x - 1200 = 0
x = 40