Рассмотрим последние цифры степеней чисел 3 и 7 (очевидно, степени чисел 33 и 77 оканчиваются на те же цифры; в таблице последняя цифра числа x обозначена как x mod 10):
Дальше таблицу можно не продолжать: поскольку последняя цифра степени определяется только последней цифрой предыдущей степени, то дальше всё будет повторяться: например, для степеней тройки дальше идут 3, 9, 7, 1, 3, 9, ... Таким образом, последовательность последних цифр степеней тройки и семёрки является периодической с периодом 4, то есть прибавление любого количества четвёрок к показателю степени последнюю цифру не меняет.
, поэтому
оканчивается на ту же цифру, что и
, то есть на 3.
, поэтому
оканчивается на ту же цифру, что и
, то есть на 7. Значит, сумма
оканчивается на ту же цифру, что и
, то есть на 0. Искомый остаток равен нулю.
ответ. 0
Поделитесь своими знаниями, ответьте на вопрос:
Разложи на множители: xz5+xy5−yz5−y6 .
(xm^5+xy^5 )-(ym^5+y^6 )=x(m^5+y^5 )-y(m^5+y^5 )\=(x-y)(m^5+y^5 )\=
=(x-y)(m+y)(m^4-m^3 y+m^2 y^2-my^3+y^4)
Объяснение: