MN - средняя линия трапеции, она равна полусумме ее оснований
MN = (BC+AD)/2 = (4,3+7,7)/2 = 12/2 = 6
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).
Объяснение:
Порядок выбора не важен, поэтому применяется основная формула - сочетания без повторения.
1)
С₆² = 6!/(2!*4!) = 6*5/2 = 15 сп. для выбора 2 мальчиков из 6
С₇² = 7!/(2!*(7-2)! ) = 7*6*5!/ (2*5!) = 7*3 = 21 сп. для выбора 2 девочек из 7
Так как выбор данной команды осуществляется двумя последовательными действиями выбора девочек и мальчиков, то:
С₆² *С выбрать 2 мальчиков и 2 девочек
2)
С₆³ = 6!/(3!*(6-3)!) = 6*5*4*3!/2*3*3! = 20 сп. выбрать 3 мальчиков из 6
С₇¹ = 7 сп. выбрать 1 девочку из 7
С₆³ * С выбрать 3 мальчика и 1 девочку
3)
С выбрать 4 мальчиков из 6
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
ответ
Поделитесь своими знаниями, ответьте на вопрос:
ответ пишите кратко и понятно
(4,3+7,7)/2=12/2=6(см)