3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x tg²x+6tgx+8=0 tgx=a a²+6a+8=0 a1+a2=-6 U a1*a2=8 a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
Исследовать функцию: у(x)=x^3/3-x^2+6 1. Область определения функции (-бесконечность;бесконечность) 2. Множество значений функции (-бесконечность;бесконечность) 3. Проверим, является ли функция четной или не четной? у(x)=x^3/3-x^2+6 у(-x)=(-x)^3/3-(-x)^2+6=-x^3/3-x^2+6, так как у(x) не=у(-x) и у(-x) не=-у(x), то данная функция не является ни четной ни не четной. 4. Найдем координаты точек пересечения графика функции с осями координат: а) с осью ОХ: у=0, x^3/3-x^2+6=0, данное уравнение не имеет рационального корня, а корень принадлежит промежутку (-2;-1) б) с осью ОУ: х=0, тогда у=6. Следовательно график функции пересекает ось ординат в точке (0;6) 5) Найдем точки экстремума функции и промежутки возрастание и убывания: у'(x)=x^2-2x; f'(x)=0 x^2-2x=0 x1=0 x2=2. Получили две стационарные точки, проверим их на экстремум: Так как на промежутках (-бесконечность;0) и (2; бесконечность) у'(x)>0, то на этих промежутках функция возрастает. Так как на промежутке (0;2) у'(x)<0, то на этом промежутке функция убывает. Так как при переходе через точку х=0 производная меняет свой знак с + на - ,то в этой точке функция имеет максимум у(0)=0-0+6=6 Так как при переходе через точку х=2 производная меняет свой знак с - на + то в этой точке функция имеет минимуму у(2)=8/3-4+6=14/3 6. Найдем точки перегиба функции и промежутки выпуклости: y"(x)=2x-2; y"(x)=0 2x-2=0 x=1 Так как на промежутке (-бесконечность; 1) y"(x)<0, то на этом промежутке нрафик функци направлен выпуклостью вверх. Так как на промежутке (1;бесконечность) y"(x)>0, то на этом промежутке график функции направлен выпуклотью вниз Так как при переходе через точку х=1 вторая производная меняет свой знак, то точка х=1 является точой перегиба. y(1)=1/3-1+6=16/3 7. проверим имеет данная функция асимптоты: а) вертикальные Так как точек разрыва функция не имеет, то она не имеет вертикальных асимптот. б) наклонные вида у=kx+b k=lim y(x)/x=lim((x^3/3-x^2+6)/x)= бесконечность Так как данный предел бесконечен, то график не имеет наклонных асимптот 8. все строй график ДУмаю это у меня у самогобыла акая проблема но вот писал
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Установите при каких значения переменной не имеет смысла алгебраическая дробь1.4 или
tg²x+6tgx+8=0
tgx=a
a²+6a+8=0
a1+a2=-6 U a1*a2=8
a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z
a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
5. 2cos^2 x – 11sin 2x = 12
2cos²x-22sinxcosx-12sin²x-12cos²x=0/cos²x
12tg²x+22tgx+10=0
6tg²x+11tgx+5=0
tgx=a
6a²+11a+5=0
D=121-120=1
a1=(-11-1)/12=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=(-11+1)/12=-5/6⇒tgx=-5/6⇒x=-arctg5/6+πk,k∈z
6. 2sin^2 x – 3sin 2x – 4cos 2x = 4
2sin²x-6sinxcosx-4cos²x+4sin²x-4sin²x-4cos²x=0/cos²x
2tg²x-6tgx-8=0
tg²x-3tgx-4=0
tgx=a
a²-3a-4=0
a1+a2=3 U a1*a2=-4
a1=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=4⇒tgx=4⇒x=arctg4+πn,n∈z