ИльяАндреевич-Мария
?>

(2x + y =11, (5x – 4y=8; Решите систему уравнений​

Алгебра

Ответы

profitgroup51

Объяснение:

5;1

10;0.5

Мануэлла
Уравнение касательной для функции f(x) = e^x в точке x = x0
имеет вид y = (e^x0) * x + b
 {
Общее уравнение касательной для функции f(x): y = mx+b,
где m - slope factor,m = d/dx*f(x),
в нашем случае m=d/dx*f(x) = (e^x)' = e^x
}
 если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1
т.к. формула касательной для нашей функции y = (e^x0) * x + b, то
e^x0 = 1, b = 1, откуда x0 = 0,
в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)), 
действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1,
совпадают, f(0) = y(0) = 1
таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
алексей-Ветошкин

\boxed{\dfrac{8}{3}} квадратных единиц

Объяснение:

Построим график y = -x^{2} + 4x - 4

Пусть S площадь ограниченная графиком функции  y = -x^{2} + 4x - 4  осями координат. Пусть точка B - пересечение графика y и оси абсцисс, точка A - пересечение графика y и оси ординат.

y(0) = -0^{2} + 4 * 0 - 4 = -4

y = 0

-x^{2} + 4x - 4 = 0|*(-1)

x^{2} - 4x + 4 =0

(x - 2)^{2} = 0 \Longleftrightarrow x - 2 =0

x = 2

Координаты точек A и B:

A(0;-4)

B(2;0)

Пусть точка начало системы координат, тогда точка O имеет координаты O(0;0).

Узнаем уравнение прямой проходящей через точки A и B. Уравнение прямой с угловым коэффициентом в общем виде: y = kx + b.

\displaystyle \left \{ {{A: -4=k * 0 + b} \atop {B:0=2*k + b}} \right.\displaystyle \left \{ {{ b=-4} \atop {0=2k - 4}} \right.\displaystyle \left \{ {{ b=-4} \atop {4=2k |:2}} \right.\displaystyle \left \{ {{ b=-4} \atop {k = 2}} \right.

y = 2x - 4

Пусть S_{1} - площадь между прямой y = 2x - 4 и функцией y = -x^{2} + 4x - 4

Пусть f(x) = y = 2x - 4 и g(x) = y = -x^{2} + 4x - 4.

S = S_{\bigtriangleup AOB} - S_{1}

OA = \sqrt{(x_{A} - x_{O})^{2} + (y_{A} - y_{O})^{2}} = \sqrt{(0 - 0)^{2} + (-4 - 0)^{2}} =\sqrt{16} = 4

OB = \sqrt{(x_{B} - x_{O})^{2} + (y_{B} - y_{O})^{2}} = \sqrt{(2 - 0)^{2} + (0 - 0)^{2}} =\sqrt{4} = 2

По формуле площади прямоугольного треугольника:

S_{\bigtriangleup AOB} = \dfrac{AO * OB}{2} = \dfrac{4 * 2}{2} = 4.

Промежуток интегрирования: [0;2]

Докажем, что f(x) \geq g(x) при x \in [0;2]

2x- 4 \geq -x^{2} + 4x - 4

x^{2} - 2x \geq 0

x(x - 2) \geq 0

x \in (-\infty;0] \cup [2;+\infty) тогда можно сделать вывод, что

g(x) \geq f(x) при x \in [0;2].

По теореме:

S_{1} = \displaystyle \int\limits^2_0 {(g(x) - f(x))} \, dx = \int\limits^2_0 {-x^{2} +4x - 4 - 2x + 4} \, dx = \int\limits^2_0 {2x-x^{2}} \, dx =

= x^{2} - \dfrac{x^{3} }{3} \bigg|_0^2 = (2^{2} - \dfrac{2^{3} }{3}) - 0 = 4 - \dfrac{8}{3} = \dfrac{12 - 8}{3} = \dfrac{4}{3}.

S = S_{\bigtriangleup AOB} - S_{1} = 4 - \dfrac{4}{3} = \dfrac{12 -4}{3} = \dfrac{8}{3} квадратных единиц.


найти площадь фигуры,ограниченной осями координат и параболой
найти площадь фигуры,ограниченной осями координат и параболой
найти площадь фигуры,ограниченной осями координат и параболой

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

(2x + y =11, (5x – 4y=8; Решите систему уравнений​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

apromovich1
И.Д.1065
marvindkc
sedalex
Дудина895
Olgax732
Семеновна-Павел
arnaut-anna
vallihhh
zakupka-marion
lezzzzka5510
Posadskii-Sergeevna
olkay
Потапова 79275136869323
Разделите на множители x^2-64= 9a^2-16b^2=
marinamarinyuk39