Объяснение:
1) прямая у=2x+37 не является касательной к графику функции f(x)=x³-3x²-7x+10 ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10
f'(x)=3x²-6x-7; f'(t)=3t²-6t-7
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔
3t²-6t-7=2 и -2t³+3t²+10=37
3t²-6t-7=2
3t²-6t-9=0
t²-2t-3=0⇒t₁=-1, t₂=3
t=-1⇒-2t³+3t²+10=2+3+10=15≠37
t=3⇒-2t³+3t²+10=-16+27+10=21≠37
t∈∅
2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3
а≠0, иначе прямая касалась бы прямой.
Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3
f'(x)=2ax+2; f'(t)=2at+2
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1 и -at²+3=1
2at+2=1⇒at=-0,5
2=at²=at·t=-0,5t⇒t=-4⇒a=1/8
3) x(t)=0,5t³-3t²+2t
v(t)=x'(t)=1,5t²-6t+2
v(6)=1,5·6²-6·6+2=54-36+2=20 м/с
Объяснение:
1) прямая у=2x+37 не является касательной к графику функции f(x)=x³-3x²-7x+10 ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10
f'(x)=3x²-6x-7; f'(t)=3t²-6t-7
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔
3t²-6t-7=2 и -2t³+3t²+10=37
3t²-6t-7=2
3t²-6t-9=0
t²-2t-3=0⇒t₁=-1, t₂=3
t=-1⇒-2t³+3t²+10=2+3+10=15≠37
t=3⇒-2t³+3t²+10=-16+27+10=21≠37
t∈∅
2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3
а≠0, иначе прямая касалась бы прямой.
Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3
f'(x)=2ax+2; f'(t)=2at+2
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1 и -at²+3=1
2at+2=1⇒at=-0,5
2=at²=at·t=-0,5t⇒t=-4⇒a=1/8
3) x(t)=0,5t³-3t²+2t
v(t)=x'(t)=1,5t²-6t+2
v(6)=1,5·6²-6·6+2=54-36+2=20 м/с
Поделитесь своими знаниями, ответьте на вопрос:
найти корень из 89, насколько я знаю это пишется вот так. Обязательно вообще в дискриминанте извлекать корень, или можно записать 89?
Нет, извлекать корень не нужно, если это не полный квадрат (то есть при извлечении получится целое число), но выносить за пределы корня множитель (если число раскладывается на множители) желательно, например:
А корень из 89 — иррациональное число, поэтому так и записывайте, ничего не извлекая.