Nataliya Aleksandr1197
?>

Найдите меньшую высоту прямоугольного трёуголника с катетами 3 и 4

Алгебра

Ответы

Look7moscow
Предлагаю найти высоту, используя формулу высоты в прямоугольном треугольнике. h=(a*b) /c. Из Пифагоровых тройки известно, что гипотенуза 5. Ну или ищем по т. Пифагора. Осталось подставить 3,4,5 в формулу и получаем 2,4. Решение приложено.

Детальніше - на -
 Найдите меньшую высоту прямоугольного трёуголника с катетами 3 и 4
kareeva
a) Рассмотри график функции y=x^2+3x+3
Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0
D = 9 - 4*3= - 3
Т.к. D = -3 < 0 ,
Следовательно, график y=x^2+3x+3 не пересекает ось Ох 
Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно

б) Рассуждения аналогичны предыдущему примеру
Вычислим дискриминант для уравнения 4x-4x^2-2=0
D = 16 - 4*4*2 = -16
Следовательно, график y=4x-4x^2-2 не пересекает ось Ох 
Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
magichands68
Решение
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2)  log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите меньшую высоту прямоугольного трёуголника с катетами 3 и 4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Иванов1813
volkovaoksana19806037
АркадьевичБундин789
egorov
postbox
ajuli2
Xeniya91
Vladimirovna1370
peresvetoff100015
onboxru16
Иванина
baxirchik
Евгения-Валерий
mantseva
kotovayaanastasia2069