Над всеми векторами черта. Надо найти координаты векторов А₁А₂; А₁А₃; А₁А₄. для чего от координат конца вектора отнимаем координаты начала.
А₁А₂=(-2;7;-6); А₁А₃(-6;1;-3); А₁А₄(-13;0;-3), затем находим определитель третьего порядка
-2 7 -6
-6 1 -3
-13 0 -3, у меня нет тут вертикальных черточек для него , определитель равен
40 0 15
-6 1 -3
-13 0 -3
=1*(-1)²⁺²*(-120+195)=75, далее берем модуль 75, и делим его на шесть. это есть объем тетраэдра и он равен 75/6=12.5/ед. куб./
Чтобы найти высоту, опущенную на грань А₁А₂А₃, надо найти площадь грани А₁А₂А₃ , т.е. половину модуля векторного произведения векторов А₁А₂ и А₁А₃
Векторное произведение находим как определитель
i j k
-2 7 -6
-6 1 -3, он равен
i *(-21+6) -j *(6-36)+ k*(-2+42)= -15i +30j +40 k
определитель находил путем его разложения по элементам первой строки, зная координаты вектора (-15;30;40), можем найти половину модуля этого произведения, что и будет площадью грани А₁А₂А₃ , т.е.
0.5*√(225+900+1600)=0.5*√2725=2.5√109≈26.1
Зная площадь s грани А₁А₂А₃ и объем тетраэдра v можно теперь найти высоту h, опущенную на эту грань из вершины А₄, она равна h=3v/s=
3*12.5/(2.5√109)=15√109/109≈1.44
Поделитесь своими знаниями, ответьте на вопрос:
4.65. Имеется два сплава. Один содержит 2, 8 кг золота и 1, 2 кг при-месей, другой — 2, 7 кг золота и 0, 3 кг примесей. Отрезав покуску от каждого сплава и сплавив их, получили 2 кг сплавас содержанием золота 85 %. Найдите, сколько граммов металлаОтрезали от второго куска. Решить системой уравнения с 2 переменными
tgx=ctgx
tgx=1/tgx
tg^2(x)=1 =>tgx=1=> x=arctg 1+Пn,n принадлежит => x= п/4+пn,n принадлежит Z
S={п/4+пn|n принадлежит Z}
3cos2x+sin^2(x)+5sinxcosx=0
3cos2x+sin^2(x)+5sinxcosx=0
3(2cos^2(x)-1)+sin^2(x)+5sinxcosx=0
6cos^2(x)-3sin^2(x)-3cos^2(x)+sin^2(x)+5sinxcosx=0|:cos^2(x) неравный 0
6-3tg^2(x)-3+tg^2(x)+5tgx=0
Пусть t=tgx,тогда
2t^2-5t-3=0
D=25-4*2*(-3)=25+24=49
t=(5-7)/4 t=-1/2 tgx=-1/2 x=-arctg1/2+Пn,n принадлежит Z
или или или или
t=(5+7)/4 t=3 tgx=3 x=arctg3+Пk,k принадлежит Z