Пусть дан прямоугольный треугольник ABC с прямым углом C, и острым углом А=60 градусов. Пусть CDKN – данный прямоугольник, точка D лежит на катете AC , K лежит на гипотенузе AB=8 см, точка N лежит на катете BC.Тогда по условию задачи BC=AB*sin A=8*sin 60=4*корень(3).АС=8*сos 60=8*1\2=4Пусть CD=x см, тогда AD=4-x смТогда DK=AD*tg A=(4-x)*корень(3)Площадь прямоугольника CDKN S(x)=CD*DK=x*(4-x)*корень(3)Ищем производную S’(x)=корень(3)*(4-х-х)=2 *корень(3)*(2-х)Ищем критические точки S’(x)= 2 *корень(3)*(2-х)=0Х=2От 0 до 2 производная больше 0, от 2 до 8 меньше 0, значит в точке 2 у функции максимум, то есть площадь прямоугольника S(x) принимает наибольшее значение для х=2S(2)= 2*(4-2)*корень(3)=4*корень(3).Овтет: 4*корень(3).
denisovatat7
13.06.2022
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сколько разных пятицифровых чисел можно записать с цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 без из повторения? ( элементы комбинаторики )