prik-galina7390
?>

Подробно и на уровне 9 класса a) {3x+2y=7 9x-8y=35 b) {xy=-6 x-3y=11 c) {x^2+y=26 x+y=6

Алгебра

Ответы

marinatehnomaster21
ответы и решение на фото
Подробно и на уровне 9 класса a) {3x+2y=7 9x-8y=35 b) {xy=-6 x-3y=11 c) {x^2+y=26 x+y=6
Валерия Воробьева396

лучше конечно читать параграф но я нашёл обьяснения

Объяснение:

Нули функции

Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.

Нули – это точки пересечения графика функции с осью Ох.

Четность функции

Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)

Четная функция симметрична относительно оси Оу

Нечетность функции

Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).

Нечетная функция симметрична относительно начала координат .

Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.

Возрастание функции

Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)

Убывание функции

Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)

Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:

(-∞ x1), (x1, x2), (x3; +∞)

Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции

Локальный максимум

Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)

Локальный минимум

Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).

Точки локального максимума и точки локального минимума называются точками локального экстремума.

x1, x2 - точки локального экстремума.

Периодичность функции

Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).

Промежутки знакопостоянства

Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.

f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)

Непрерывность функции

Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .

Точки разрыва

Точки, в которых нарушено условие непрерывности называются точками разрыва функции.

x0- точка разрыва.

Natella-874535
Точка x0 называется точкой максимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)< f(x0).Точка x0 называется точкой минимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)> f(x0).Точки минимума и точки максимума называются точками экстремума.Теорема. Если x0 – точка экстремума дифференцируемой функции f(x), то f ′(x0) =0.Точки, в которых функция имеет производную, равную нулю, или недифференцируема (не имеет производной), называют критическими точками. Точки, в которых производная равна 0, называют стационарными.Геометрический смысл: касательная к графику функции y=f(x) в экстремальной точке параллельна оси абсцисс (OX), и поэтому ее угловой коэффициент равен 0 ( k = tg α = 0).Теорема: Пусть функция f(x) дифференцируема на интервале (a;b), x0 С (a;b), и f ′(x0) =0. Тогда:1) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «плюса» на «минус», то x0 – точка максимума.2) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «минуса» на «плюс» , то x0 – точка минимума. ПРАВИЛО нахождения наибольшего и наименьшего значения функции f(x)                                          на отрезке [a;b]. 1. Найти призводную функции и приравнять нулю. Найти критические точки.2. Найти значения функции на концах отрезка, т.е. числа f(a) и f(b).3. Найти значения функции в тех критических точках, которые принадлежат [a;b].4. Из найденных значений выбрать наибольшее и наименьшее.  ПРАВИЛО нахождения минимума и максимума функции f(x)                                          на интервале (a;b).1. Найти критические точки f(x) (в которых f ′(x)=0 или f(x) не существует) .2. Нанести их на числовую прямую (только те, которые принадлежат (a,b) ).f ′(x)                +                       –                        +
                 a x0x1 bf (x)                   /                       \                        /3. Расставить знаки производной в строке f ′(x) , расставить стрелки в строке f(x).4. x max = x0,           x min = x1.5. y max = y(x0),       y min = y(x1).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Подробно и на уровне 9 класса a) {3x+2y=7 9x-8y=35 b) {xy=-6 x-3y=11 c) {x^2+y=26 x+y=6
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ruslan
lor005148
Ingakazakova
AndreiFaikov1943
victoriadan
tgeraskina
vlrkinn
Присакарь520
lera4075
mvolkov8
kate281078
fancy-decor67
lagutkins
Кожуховский398
Bella Sergei