bandurinei
?>

При каком значении а векторы ав и сд колониарны , если а(-2; -1; 2), в(4; -3; 6), с(-1, а-1; 1), д(-4; -1; а)?

Алгебра

Ответы

olg14855767
AB(4-(-2);-3-(-1);6-2)=(6;-2;4)
CD(-4-(-1);-1-(a-1);a-1)=(-3;-a;a-1)
векторы a(x1;y1;z1) и b(x2;y2;z2) коллинеарны если: x1/x2=y1/y2=z1/z2
6/(-3)=-2/(-a)=4/(a-1)
-2=2/a; a=-1
ответ а=-1
ЕвгенияСергеевна

Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:

\sin\alpha\cos\beta = \dfrac{\sin\left(\alpha + \beta\right) + \sin\left(\alpha - \beta\right)}{2}

В нашем случае получается:

\sin 2x\cdot\cos2x = \dfrac{\sin\left(2x + 2x\right) + \sin\left(2x - 2x\right)}{2} = \dfrac{\sin4x + \sin0}{2} = \boxed{\dfrac{\sin4x}{2}}

Итак, от y = \sin2x\cos2x мы перешли к  y = \dfrac{\sin4x}{2} . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: \underline{f(x) = f\left(x + T\right)} , где T - это и есть этот период. В нашем случае получается вот так:

\boxed{\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x + T\right)}{2}}

Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что T мы изменять не можем, так как это переменная, которую нам надо найти. Зато x мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять \boldsymbol{x = 0}. Нам известно, что \sin0 = 0, и вся левая часть в него превратится. Получится вот так:

\dfrac{\sin\left(4\cdot 0\right)}{2} = \dfrac{\sin4\left(0+T\right)}{2}dfrac{\sin0}{2} = \dfrac{\sin4T}{2}dfrac{\sin4T}{2} = 0

Теперь просто решаем обычное тригонометрическое уравнение и находим T.

\dfrac{\sin4T}{2} = 0sin4T = 04T = \pi kboxed{T = \dfrac{\pi k}{4}}\ \ ,\, k\in\mathbb{Z}

Итак, вот мы к этому и пришли. Возникает вопрос, что делать с k? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как k\in\mathbb{Z}, то k = \{...\, ,-2,-1,0,1,2,...\}. Положительное число должно быть больше нуля, и очевидно, что \dfrac{\pi k}{4} 0  при k \geqslant 1. Поэтому подставляем наше первое значение: k = 1. При нём получаем:

T_1 = \dfrac{\pi \cdot 1}{4} = \dfrac{\pi}{4}

Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству f\left(x\right) = f\left(x+T_1\right).

\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x+\frac{\pi}{4}\right)}{2}dfrac{\sin4x}{2} = \dfrac{\sin\left(4x +\pi\right)}{2}

Согласно формуле приведения, \sin\left(\pi + \alpha\right) = -\sin\alpha, отсюда имеем:

\dfrac{\sin4x}{2} = -\dfrac{\sin4x}{2}

Равенство не выполнено, значит,  \dfrac{\pi}{4} не является периодом данной функции. Проверяем дальше, k = 2.

T_2 = \dfrac{\pi\cdot 2}{4} = \dfrac{\pi}{2}

Точно так же подставляем в f(x) = f\left(x + T_2\right).

\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x + \frac{\pi}{2}\right)}{2}dfrac{\sin4x}{2} = \dfrac{\sin\left(4x + 2\pi\right)}{2}

По формуле приведения \sin\left(2\pi + \alpha\right) = \sin\alpha, поэтому:

\boxed{\dfrac{\sin4x}{2} = \dfrac{\sin4x}{2}}

А потому T_2 = \dfrac{\pi}{2}  и является искомым периодом.

ответ: В)

Александрович Андреевна

найти координаты точек => найти x и y когда эти две функции равны.

Есть 3 варианта : x и y не существует = > прямые параллельны

x и y - бесконечно много вариантов = > прямые совпадают

x и y - только один ответ = > прямые пересекаются.

(Других нет т.к. различные прямые не могут пересекаться более чем в 1 ой точке)

решим систему уравнений:

y = 10x - 14

y = -3x + 12

из 1 -то вычитаем второе:

<=> (Знак - равносильный переход)

y = 10x - 14

0 = 13x - 26

<=>

y = 20 - 14

x = 2

<=>

y = 6

x = 2

=> координаты точки пересечения - (2, 6)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каком значении а векторы ав и сд колониарны , если а(-2; -1; 2), в(4; -3; 6), с(-1, а-1; 1), д(-4; -1; а)?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

АнтонАртем
sashakrotova943
annakuznetsova841
Бондарев-Исаханян
manager6
marinakovyakhova
gamolml
dimoni86
varvv15
M10M11M12
Ivanova.i.bkrasheninnikov
verakmves
stailwomen31
tinadarsi
osuvorova7979