V - знак корня 1)V(x+9) =x-3 ОДЗ: {x+9>=0; x>=-9 {x-3>=0; x>=3 Решение ОДЗ: x>=3 Т.к. обе части уравнения неотрицательны, возведем их в квадрат: x+9= (x-3)^2 x+9= x^2-6x+9 x+9-x^2+6x-9=0 -x^2+7x=0 x^2-7x=0 x(x-7)=0 x=0; x=7 x=0 нам не подходит по ОДЗ ответ:{7} 2)V(x-2)= V(x^2-4) ОДЗ: {x-2>=0; x>=2 {x^2-4>=0; x<=-2, x>=2 Решение ОДЗ: x>=2 Возведем в квадрат обе части: x-2=x^2-4 x-2-x^2+4=0 -x^2+x+2=0 x^2-x-2=0 D=(-1)^2-4*1*(-2)=9 x1=(1-3)/2=-1 - не подходит по ОДЗ x2=(1+3)/2=2 ответ:{2} 3)V(12+x^2) <6-x В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной. ОДЗ: {12+x^2>=0 при x e R {6-x>0, x<6 Решение ОДЗ: x<6 Возведем в квадрат обе части: 12+x^2<(6-x)^2 12+x^2<36-12x+x^2 12+x^2-36+12x-x^2<0 12x-24<0 12x<24 x<2 С учетом ОДЗ: x <2
Елена_Кошевой
21.11.2021
Рассмотрим сам многочлен в общим виде , для этого откинем по условию он должен быть, квадратом некого многочлена. Заметим что в этом многочлене есть , а он не возможен при квадрате , и заметим то что старшая степень равна . Тогда наш многочлен есть двучлен вида . Что есть частный случаи многочлена. Тогда запишем То есть
Заметим что так как оно противоречит условию что не имеет решений.
Рассмотрим функцию очевидно . То есть наше значение . Что согласуется с значение . Заметим что при Выше было сказано при каких значениях это справедливо , заметим что
Тогда Так же с обратным значением оно равно ответ Сам многочлен
(x + 3) • ((x + 4)² - (x + 3) • x + 3) = 0
(x + 3) • ((x + 3)² - (x + 3x) + 3) = 0
(x + 3) • ((x + 3)² - x² - 3x + 3) = 0
x + 3 = 0
(x + 3)² - x² - 3x + 3 = 0
x1 = -4
x2 = -3