kgrechin
?>

Решите (x+3)^3 - (x+3)^2*x+3(x+3)=0

Алгебра

Ответы

marinamarinyuk39
(x + 3)³ - (x + 3)² • x + 3(x + 3) = 0
(x + 3) • ((x + 4)² - (x + 3) • x + 3) = 0
(x + 3) • ((x + 3)² - (x + 3x) + 3) = 0
(x + 3) • ((x + 3)² - x² - 3x + 3) = 0
x + 3 = 0
(x + 3)² - x² - 3x + 3 = 0
x1 = -4
x2 = -3
fouettearoma
V - знак корня
1)V(x+9) =x-3
ОДЗ:
{x+9>=0; x>=-9
{x-3>=0; x>=3
Решение ОДЗ: x>=3         
Т.к. обе части уравнения неотрицательны, возведем их в квадрат:
x+9= (x-3)^2
x+9= x^2-6x+9
x+9-x^2+6x-9=0
-x^2+7x=0
x^2-7x=0
x(x-7)=0
x=0; x=7
x=0 нам не подходит по ОДЗ
ответ:{7}
2)V(x-2)= V(x^2-4)
ОДЗ:
{x-2>=0; x>=2
{x^2-4>=0; x<=-2, x>=2
Решение ОДЗ: x>=2         
Возведем в квадрат обе части:
x-2=x^2-4
x-2-x^2+4=0
-x^2+x+2=0
x^2-x-2=0
D=(-1)^2-4*1*(-2)=9
x1=(1-3)/2=-1 - не подходит по ОДЗ
x2=(1+3)/2=2
ответ:{2}
3)V(12+x^2) <6-x
В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной.
ОДЗ:
{12+x^2>=0 при x e R
{6-x>0, x<6
Решение ОДЗ: x<6
Возведем в квадрат обе части:
12+x^2<(6-x)^2
12+x^2<36-12x+x^2
12+x^2-36+12x-x^2<0
12x-24<0
12x<24
x<2
С учетом ОДЗ: x <2
Елена_Кошевой
Рассмотрим сам многочлен в общим виде , для этого откинем sinb;sina;cosg  
x^4+ax^2+bx+c по условию он должен быть, квадратом некого многочлена. 
Заметим  что в этом многочлене есть bx , а он не возможен при квадрате , и заметим то что старшая степень равна 4
Тогда наш многочлен есть двучлен  вида (x^2+t)^2=x^4+2tx^2+t^2. Что есть частный случаи многочлена. 
Тогда запишем     x^4+2^{3sina}*x^2+x\sqrt{2^{1-sinb}-cosg}+sin^2b+cos^2g=(x^2+a)^2
То есть  
2^(1-sinb)=cosg\\ t^2=sin^2b+cos^2g
Заметим что  sin^2b+cos^2g \neq 1 так как оно противоречит условию 2^(1-sinb)=cosg  что не имеет решений. 
t^2=sin^2b+cos^2g 
Рассмотрим функцию  f(a;b)=sin^2b+cos^2g очевидно  max=2\\ x=\frac{\pi}{2};y=-\pi
То есть наше значение      t \leq \sqrt{2}. Что согласуется  с значение 
8^{sina} \leq 8\\ sina \leq 1
Заметим что при   (x^2+\sqrt{2})^2=x^2+2\sqrt{2}+2  
 Выше было сказано при каких значениях это справедливо ,  заметим что 
 8^{sina}=2\sqrt{2}\\ sina=\frac{1}{2}\\ a=\frac{\pi}{6} 
  Тогда sin(a+b+g)=sin(\frac{\pi}{6}+\frac{\pi}{2}-\pi)=sin(\frac{-2\pi}{3})=-\frac{\sqrt{3}}{2} 
Так же с обратным значением оно равно \frac{\sqrt{3}}{2} 
 ответ +-\frac{\sqrt{3}}{2}
    Сам многочлен (x^2+\sqrt{2})^2 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите (x+3)^3 - (x+3)^2*x+3(x+3)=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Штакина1568
vodexshop2
Aleksei806
roma8
korotaeva778898
sklad2445
Zhanibekrva Kandaurova
АлександровнаВладлен243
kalterbrun
schernov
anytkaakk
Garifovich Greshilova791
ruslanriad10
ev89036973460
kia80