Vera_Shuklin
?>

(2-y)(y²+3) выражение (a+4)(1-a)+a² выражение (m+2)(m²-m+2) выражение

Алгебра

Ответы

Виталий887
Фоточка тебе в
(2-y)(y²+3) выражение (a+4)(1-a)+a² выражение (m+2)(m²-m+2) выражение
Vitproficosmetics
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;
klykovav672
График заданной функции с модулем имеет вид параболы, у которой часть графика ниже оси х зеркально перенесена в положительные значения.
Граничные точки находим из уравнения x²−6x+8 = 0.
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-6)^2-4*1*8=36-4*8=36-32=4;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√4-(-6))/(2*1)=(2-(-6))/2=(2+6)/2=8/2=4;
x_2=(-√4-(-6))/(2*1)=(-2-(-6))/2=(-2+6)/2=4/2=2.
То есть в точках х =2 и х =4 происходит перелом параболы.
График и таблица координат точек для построения графика приведены в приложении.
Постройте график функций y=|x²-6x+8|

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

(2-y)(y²+3) выражение (a+4)(1-a)+a² выражение (m+2)(m²-m+2) выражение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yaart-klementiev29
Виктория Нина
R7981827791127
migreen
centrprof20
isaev
dm1trviktor585
polotovsky
Irinagarmonshikova
mg4954531175
Ильдар-Кугай
Ольга1915
Georgievich-Zamudinovna2003
Yevgenevich1150
astenSA