Зависимость пути от времени при прямолинейном движении задана уравнением s(t)=(2/3)*x^3-(1/2)*x^2+3x-7 вычислите скорость и ускорение в момент времени t=2c
Скорость - это производная пути от времени. То есть v=x'(t) Чтобы найти скорость в момент времени t=2c, надо найти производную функции s(t) и подставить значение t=2 s' (t) =3·(2/3)·(x^2)-(1/2)·2·x+3=2(x^2)-x+3 s' (2) =2·(2^2)-2+3=8-2+3=9
Ускорение (обозначается а) - это производная скорости от времени. То есть a=v'(t) Чтобы найти ускорение в момент времени t=2c, надо найти производную функции v(t) и подставить значение t=2 v' (t)=2·2x-1=4x-1 v' (2)=4·2-1 = 7
tyrenumberone
02.05.2021
Отдельный случай квадратное неравенство вырождается в линейное
а значит выполняется для всех Пусть теперь
квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Busyashaa
02.05.2021
Отдельный случай квадратное неравенство вырождается в линейное
а значит выполняется для всех Пусть теперь
квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Зависимость пути от времени при прямолинейном движении задана уравнением s(t)=(2/3)*x^3-(1/2)*x^2+3x-7 вычислите скорость и ускорение в момент времени t=2c
Чтобы найти скорость в момент времени t=2c, надо найти производную функции s(t) и подставить значение t=2
s' (t) =3·(2/3)·(x^2)-(1/2)·2·x+3=2(x^2)-x+3
s' (2) =2·(2^2)-2+3=8-2+3=9
Ускорение (обозначается а) - это производная скорости от времени. То есть a=v'(t)
Чтобы найти ускорение в момент времени t=2c, надо найти производную функции v(t) и подставить значение t=2
v' (t)=2·2x-1=4x-1
v' (2)=4·2-1 = 7