2tg(x) + ctg(x) - 3 = 0
Представим tg(x)=sin(x)/cos(x)
ctg(x)=cos(x)/sin(x)
Получим:
2sin(x)/cos(x)+cos(x)/sin(x)-3=0
Приводим к общему знаменателю
(2sin^2(x)+cos^2(x)-3sin(x)*cos(x))/sin(x)*cos(x)=0
Когда дробь равна 0? Когда числитель равен 0.
2sin^2(x)+cos^2(x)-3sin(x)*cos(x)=0
Разделим его на cos(x)
Это уравнение однородное, поэтому при делении на cos(x) мы не потеряем корней.
Получим: 2tg^2(x)+1-3tg(x)=0
Пусть tg(x)=t , причем t(принадлежит) (-бесконечности; +бесконечности)
Получим: 2t^2-3t+1=0
D=9-8=1
t1=3+1/4=1;
t2=3-1/4=1/2;
И того: tg(x)=1; tg(x)=1/2
Записываем корни 1 и 2 уравнения
x=п/4+пn; n(принадлежит) Z
x=arctg(1/2)+пn; n(принадлежит Z
Поделитесь своими знаниями, ответьте на вопрос:
Найти все значения параметра а, при каждом из которых система уравнений: system {x4–y4=10a–24 x2+y2=a} имеет ровно четыре различных решения.
Непротиворечащая первому варианту комбинаторика, мыслим от конечных цифр - всего 25 патронов использовал Петя, чтобы сделать 25 выстрелов и получить приз, значит 20 выстрелов он получил дополнительно (25-5=20). Эти дополнительные 20 патронов Петя мог получить, попав в мишень шесть раз по одному попаданию (3+3+3+3+3+3=18 патронов) и мининум два раза должен был попасть подряд, чтобы получить ещё 2 “патрона” (18+2=20).
ответ: в двух несовпадающих подходах Петя попадал два раза подряд.