donertime8
?>

найти производную: f(x) = 2√(e^(2x)+1); f'(0)

Алгебра

Ответы

Misyura_Viktoriya1683
f(x)=2 \sqrt{e^{2x} +1} =2* \frac{1}{2 \sqrt{e^{2x} +1} } *e ^{2x} *2= \frac{2*e ^{2x} }{ \sqrt{e^{2x} +1} } \\ \\ f`(0)= \frac{2*e^0}{ \sqrt{e^0+1} } = \frac{2}{ \sqrt{2} } = \sqrt{2}
Lilykl

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

Shamil

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

найти производную: f(x) = 2√(e^(2x)+1); f'(0)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

oksanata777
viz-art-pnz1664
Aleksandrivanovna
nestruev
makitra08
myglassi26
Albina
info2
membuksdk
AverinAA6077
klkkan
abuzik
rublevaoe392
Яна_Софья
konstantinslivkov