Координаты точки пересечения графиков данных функций (1; 1)
Решение системы уравнений х=1
у=1
Объяснение:
3х+y=4
7х—2у=5 решить графически систему уравнений.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
3х+y=4 7х—2у=5
у=4-3х -2у=5-7х
2у=7х-5
у=(7х-5)/2
Таблицы:
х -1 0 1 х -1 0 1
у 7 4 1 у -6 -2,5 1
Согласно графика, координаты точки пересечения графиков данных функций (1; 1)
Значения таблиц это подтверждают.
Решение системы уравнений х=1
у=1
1. -15 ≤ 1-2у ≤ 0
2.
Объяснение:
1. Т.к. в линейном выражении 1-2у перед у стоит знак "-", то при вычислении пределов возможных значений нужно либо поменять направление знаков больше (меньше) либо поменять местами подставляемые значения 1/2 и 8.
для 1/2 ≤ у: 1-2у ≤ 0
для у ≤ 8: 1-2у ≥ -15
Тогда: -15 ≤ 1-2у ≤ 0
2. Здесь перед у знак "+", но появилась нелинейная зависимость 4/у, поэтому нужно вычислить производную функции (4/у + у) и приравнять её к нулю, чтобы найти ее экстремум.
Но так как значение -2 не попадает в наш промежуток по условию, то это значение отбрасываем.
Значит, в точке у=2 имеем экстремум. Определим его значение:
для у=2: .
На остальных участках функция либо возрастает, либо убывает. подставим граничные значения из условия:
для у=1/2 :
для у=8: .
Т.е. имеем кривую с максимумами и минимумом 4.
Тогда
Поделитесь своими знаниями, ответьте на вопрос:
Два робітники можуть виконати замовлення за 12 днів.якщо половину роботи виконає перший робітник, а потім його замінить другий робітник, то все замовлення буде виконане за 25 днів.за скільки днів кожний робітник окремо виконає дане замовлення!
Два рабочих могут выполнить заказ за 12 дней.Если половину работы выполнит первый рабочий,а затем его сменит второй рабочий,то весь заказ будет выполнен за 25 дней.За сколько дней каждый рабочий в отдельности выполнит данный заказ!
Решение
За х дней первый рабочий в отдельности выполнит данный заказ
за у дней второй рабочий в отдельности выполнит данный заказ
Пусть 1 - объём всего заказа (т.е. вся работа), тогда
1/х - часть работы, которую выполняет первый рабочий за 1 день (т.е. производительность первого)
1/у - производительность второго рабочего за 1 день
Первое уравнение получаем через общую производительность:
1/х + 1/у = 1/12
Упростив, получим:
12(х+у) = ху
Для второго уравнения найдем время, за которое выполнит половину всего заказа 1/2 каждый рабочий, работая в отдельности:
1/2 : 1/х = х/2 дней - это время за которое половину работы выполнит первый рабочий
1/2 : 1/у = у/2 дней - это время за которое половину работы выполнит второй рабочий
Получаем второе уравнение:
х/2 + у/2 = 25
Упростив, получим:
х + у = 50
Решаем систему:
ответ: 20; 30