Всего 3 + 6 = 9 шаров.
а) Посчитаем, сколько существует взять два белых шара. На каждый из трёх шаров (3 варианта) приходится другой из оставшихся двух (2 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 3 на 2, мы получим комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными делим на 2 и получаем один это просто А и Б. Аналогично необходимо поделить на 2 произведение 3 и 2.
взять два белых шара. Проверить данный можно методом подбора, назовём шары А, Б и В. Мы можем взять два шара следующими АБ, АВ, БВ. Их три, убедились.
Аналогично решим с чёрными шарами.
Посчитаем, сколько существует взять два белых шара. На каждый из шести шаров (6 вариантов) приходится другой из оставшихся пяти (5 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 6 на 5, мы получим комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными делим на 2 и получаем один это просто А и Б. Аналогично необходимо поделить на 2 произведение 6 и 5.
Здесь подбором долго подбирать, поэтому нужно знать логику решения, описанную выше.
Теперь узнаем общее кол-во взять два любых шара. Логика та же:
Теперь узнаем вероятность того, что два шара, вытащенные из урны одновременно, одинакового цвета. Для этого две первые суммы (3 и 15) поделим на общее кол-во
(15 + 3) / 36 = 18 / 36 = 1/2.
б) В пункте А мы узнали вероятность события А - 1/2. Так как события А и Б - несовместные (если вытащили шары одного цвета, то они не разных цветов, т.е. события А и Б не могут произойти одновременно), значит вероятность события Б = 1 - 1/2 = 1/2.
1/2 = 1/2 ⇒ события А и Б - равновозможные.
Если интересно, как получить вероятность события "шары разных цветов":
На каждый из чёрных шаров (3) приходится по 6 вариантов белых (6). То есть если взять какой-то из чёрных шаров, то будет 6 вариантов для составления комбинации с белым. Поэтому 3 умножаем на 6.
В значении вероятности события Б тоже можно убедиться:
Р(Б) = 18/36 = 1/2
550 метров
Объяснение:
Определим на прямой дома как А, Б, В и Г; точки старта и финиша - S и F, соответственно.
Таким образом:
1. Расстояние между домом Андрея и точкой старта = АВ/2
2. Расстояние между точкой финиша и домом Гены = БГ/2
3. Расстояние между стартом и финишем - SF = 1000 метров.
Сложив эти отрезки мы получим расстояние между домами Андрея и Гены, т.е. АВ/2 + БГ/2 + 1000 = 2550.
1. Избавляемся от двойки в делителе и переносим числа в правую часть:
АВ + БГ = 3100
2. Это расстояние, помимо расстояния между домами Андрея и Гены включает в себя, дополнительно, расстояние между домами Бори и Васи (очень хорошо, визуально, это будет заметно на чертеже).
3. Соответственно расстояние между заданными домами = 3100 - 2550 = 550 метров
Поделитесь своими знаниями, ответьте на вопрос:
A) уравнение |x|=a-2 имеет один корень б) уравнение |x|=a^2-9 не имеет корней в) уравнение |x+1|=a^2+1 имеет два корня
неимет корней так как я тему токо год назад прошел)