Определение. Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности:
a3 + b3 = (a + b)·(a2 - ab + b2)
Для доказательства справедливости формулы суммы кубов достаточно перемножить выражения раскрыв скобки:
(a + b)·(a2 - ab + b2) =
= a3 - a2b + ab2 + ba2 - ab2 + b3 = a3 + b3
Объяснение:
Пример 1. Разложить на множители x3 + 27.
x3 + 27 = x3 + 33 = (x + 3)·(x2 - 3x + 9)
Пример 2. Разложить на множители 8x3 + 27y6.
8x3 + 27y6 = (2x)3 + (3y2)3 =
= (2x + 3y2)·(4x2 - 6xy2 + 9y4)
Пример 3. Упростить выражение 27x3 + 1
3x + 1
.
Можно заметить, что для выражения в числителе можно применить формулу суммы кубов
27x3 + 1
3x + 1
= (3x + 1)·(9x2 - 3x +1)
3x + 1
= 9x2 - 3x
Пример 3. Упростить выражение 27x3 + 1
3x + 1
.
Можно заметить, что для выражения в числителе можно применить формулу суммы кубов
27x3 + 1
3x + 1
= (3x + 1)·(9x2 - 3x +1)
3x + 1
= 9x2 - 3x
Поделитесь своими знаниями, ответьте на вопрос:
Знайти набільший цілий розв‘язок нерівності: 2х+9> 4х-7.
-2х>-16
2х<16
х<8
х Є ( -бесконечность ; 8)
х = 8