osipov1984osipov
?>

Найти на числовой окружности точки с абсциссой или ординатой, удовлетворяющие заданному неравенствам и запишите(с неравенства) каким числам t они соответствуют

Алгебра

Ответы

olimp201325

Пусть радиус окружности равен 1 (это скорее всего и имелось ввиду в задании). Тогда абсцисса точки на окружности это косинус угла φ рад. и соответствующего ему числа φ, где φ рад. - такой угол, на который повернут радиус-вектор точки из положения с координатами (1, 0)

Короче, что толку сыпать теорией, главное в вышесказанном, то что y - синус угла, а х - косинус. Нам нужно найти подходящие точки, а значит и соотвествующие им углы.

Тогда

1)

\sin\phi \leq -1\\\\\sin\phi=-1\\\phi=-\frac{\pi}{2} +2\pi n\\n \in \mathbb{Z}

2)

\cos\phi

Таких чисел/углов и соотвествующих им точек не существует.

3)

\cos\phi\frac{1}{2} \\-\frac{\pi}{3} +2\pi n

rpforma71189

рассмотрим наше уравнение:

\displaystyle 4cos^43x-4(a-3)cos^23x-(2a-5)=0

выполним замену cos²3x=t; t≥0

\displaystyle 4t^2-4(a-3)t-(2a-5)=0

чтобы уравнение имело хотя бы один корень надо чтобы D≥0

\displaystyle D=16(a-3)^2+4*4(2a-5)=16(a-2)^2\geq 0

Это неравенство выполняется для любых a

тогда проверим корни, необходимо чтобы t≥0

\displaystyle t_{1.2}=\frac{4(a-3)\pm 4|a-2|}{8}=\frac{(a-3)\pm |a-2|}{2}

рассмотрим первый корень

\displaystyle t_1=\frac{(a-3)+|a-2|}{2}\\\\1.1.a\geq 2\\\\t_1=\frac{a-3+a-2}{2}=\frac{2a-5}{2}\geq 0\\\\a\geq 2.5\\\\1.2. a

значит при а≥2.5 мы получим один положительный корень (относительно t)

проверим второй корень

\displaystyle t_2=\frac{(a-3)-|a-2|}{2}\\\\2.1. a\geq 2\\\\t_2=\frac{a-3-a+2}{2}=-\frac{1}{2}\\\\2.2. a

тут положительных корней не получим.

значит рассмотрим один положительный корень t=(2a-5)/2.  при а≥2,5

выполним обратную замену

\displaystyle cos^23x=\frac{2a-5}{2}\\\\cos3x=\pm\sqrt{\frac{2a-5}{1}}\\\\|cos3x|\leq 1; \pm\sqrt{\frac{2a-5}{2}}\leq 1

рассмотрим положительный корень

\displaystyle \sqrt{\frac{2a-5}{2}}\leq 1; \frac{2a-5}{2}\leq 1; 2a-5\leq 2; a\leq 3.5

рассмотрим отрицательный корень

\displaystyle -\sqrt{\frac{2a-5}{2}}\leq 1; \sqrt{\frac{2a-5}{2}}\geq -1

выполняется для всех а≥2.5

Собираем все вместе 2,5≤а≤3,5

Nikita_Lina1305

ну вот и не было в году в связи с этим делать все что есть в наличии и под заказ киб куйинг даставкаси ортикча расход топлива и не было в порядке с документами на сайте и в

Объяснение:

лог и в случае если вы не являетесь адресатом данного сообщения а также в приложении к письму и не было в году в связи с этим делать все что есть в наличии и под заказ киб куйинг даставкаси ортикча расход топлива и не было в порядке установленном порядке установленном порядке установленном для вас есть какие-либо замечания к кому можно посмотреть в чем проблемлог агорр в году в связи со мной и не только о себе знать и мы не сможем сделать только о том как вы думаете о тебе не сложно пришлите и под конец дня и хорошего вам вечера не

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти на числовой окружности точки с абсциссой или ординатой, удовлетворяющие заданному неравенствам и запишите(с неравенства) каким числам t они соответствуют
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Fedorova_79166180822
Нана_Елена
prianik6
oledrag7
ambstroy
avakarica
slava-m-apt
panasenko68
a8227775
ВайсманКреденс357
mlf26
office46
lelikrom2202
zodgener
svetlana-ladyga