Произведение равно нулю в том случае, если хотя бы один из множителей равен нулю, а другой при этой не теряет смысла.
D = 49 - 4 • 12 = 49 - 48 = 1
k1 = ( 7 - 1 ) / 2 = 6 / 2 = 3
k2 = ( 7 + 1 ) / 2 = 8 / 2 = 4
ОТВЕТ: 3 ; 4.
aleksandramir90
21.07.2022
по т.Виета х1+х2=0
х1*х2=к²-7к+12
к²-7к+12=0
к=3; к=4.
apetit3502
21.07.2022
Дана функция у = (-1/3)x^3+x^2. 1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет. 2-Выяснить является ли чётной или нечётной. Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: f(-x) = (-1/3)x³ + x² = (1/3)x³ + x² - Нет -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² - Нет, значит, функция не является ни чётной, ни нечётной. 3-определить точки пересечения функции с координатными осями . График функции пересекает ось X при f = 0 значит надо решить уравнение: (-1/3)x³+ x² = 0. -x³ + 3x² = 0. -x²(x-3) = 0. Имеем 2 корня: х = 0 и х = 3. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в y = (-1/3)x^3 +x^2. y = (-1/3)0³+0² = 0. Точка: (0, 0) 4-найти критические точки функции. Находим производную и приравниваем её нулю: y' = -x²+2x = -x(x-2). Имеем 2 критические точки: х = 0 и х = 2. 5-определить промежутки монотонности (возрастания,убывания). Исследуем поведение производной вблизи критических точек. х = -0.5 0 0.5 1.5 2 2.5 y'=-x^2+2x -1.25 0 0.75 0.75 0 -1.25 Где производная отрицательна - функция убывает, где положительна - функция возрастает. Возрастает на промежутке [0, 2] Убывает на промежутках (-oo, 0] U [2, oo) 6-определить точки экстремума. Они уже найдены: это 2 критические точки: х = 0 и х = 2. Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции. Минимум функции в точке: x = 0, Максимум функции в точке: х = 2. 7 -определить максимальное и минимальное значение функции. Значения функции в экстремальных точках: х = 2, у = (-1/3)*2³+2² = -8/3 + 4 = 4/3, х = 0, у = 0. 8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба. Найдем точки перегибов, для этого надо решить уравнение d2/dx2f(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, d2/dx2f(x)= -2х + 2 =-2(x−1)=0 Решаем это уравнение Корни этого ур-ния x1=1 Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках (-oo, 1] Выпуклая на промежутках [1, oo)
MDubovikov73
21.07.2022
Чтобы найти экстремумы, решаем уравнение y'(x)=0; y'(x)=3x^2+20x+25; приравниваем к нулю. 3x^2+20x+25=0; D=400-4*3*25=100; x1=(-20+10)/6=-1,(6); x2=(-20-10)/6=-5; Это точки экстремумов. Теперь надо взять вторую производную функции в этих точках. y''(x)=6x+20; y''(x1)=6*(-1.6666)+20=10 (округлённо). Это больше нуля, значит это точка локального минимума функции. y''(x2)=6*(-5)+20=-10 Это меньше нуля, значит это точка локального минимума функции. То есть от -бесконечности до -5 функция возрастает, от -5 до -1,(6) убывает и от -1,(6) до +бесконечности опять возрастает.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
При каких значениях k значение произведения корней квадратного уравнения x^2+(k^2-7k+12)=0 равно нулю?
Произведение равно нулю в том случае, если хотя бы один из множителей равен нулю, а другой при этой не теряет смысла.
D = 49 - 4 • 12 = 49 - 48 = 1
k1 = ( 7 - 1 ) / 2 = 6 / 2 = 3
k2 = ( 7 + 1 ) / 2 = 8 / 2 = 4
ОТВЕТ: 3 ; 4.