Рассмотрим 3 случая: с отрицательной, нулевой и положительной правой частью.
1. Если , то есть
.
Тогда предполагается, что модуль должен принимать значения, не большие некоторого отрицательного, то есть тоже отрицательные. Но модуль не может принимать отрицательных значений. Значит, в этом случае неравенство решений не имеет.
2. Если , то есть
.
Получаем неравенство:
Поскольку модуль не принимает отрицательных значений, достаточно решить уравнение:
3. Если , то есть
, то получаем неравенство с положительной правой частью:
Заменим его следующим двойным неравенством:
Таким образом получаем ответ:
при : решений нет
при :
при :
Задача. При каких значениях параметра система
имеет бесконечное множество решений?
Решение. Система линейных уравнений, которая имеет вид
допускает три варианта решений:
1. Имеет одно решение:
2. Не имеет решений:
3. Имеет бесконечное количество решений:
Таким образом, заданная система линейных уравнений будет иметь бесконечное количество решений, если:
Следовательно, нужно рассмотреть три пары уравнений, из которых нужно выбрать корень (корни), который встречается у всех трех уравнений:
Значит, при все три выражения равны друг другу, откуда делаем вывод, что данная система будет иметь бесконечное количество решений.
ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Какое из указанных ниже чисел заключено между числами 2/17 и 4/19 1)-0, 1 2)0 3)0, 1 4)0, 2 с объяснением
Числа -0,1 и 0 явно не подходят, так как заданные числа положительные. Остаются числа 0,1 или 0,2. Замечаем, что 4/19> 4/20=1/5=0,2. Значение 2/17>2/18=1/9≈0,111111111. То есть искомый ответ: 4) 0,2.
ответ: 4)