sgritsaev
?>

Представьте трехчлен в виде квадрата двучлена х²-10х+25

Алгебра

Ответы

arturnanda803
ответ
х²-10х+25 = (х-5)²
Присакарь520

Вот накалякал. Разбирайся :)

xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9

xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z

x(y-5) = 5y
x = 5y/(y-5)


5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)

35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17

y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53

x = 5*630/(630/53 - 5)/53  =  5*630/((630/53 - 5)*53) = 5*630/365 = 630/73

Орлова

Объяснение:

На промежутке (-6; -2) функция f(x) возрастает, значит на этом промежутке f'(x)>0, а это и есть тангенс угла наклона касательной к графику (tga = f'(x)). Следовательно в точках x=-4; -3 ∈ (-6;-2) tga>0.

На промежутке (-2; 4) функция f(x) убывает, значит на этом промежутке f'(x)<0, а это и есть тангенс угла наклона касательной к графику (tga = f'(x)). Следовательно в точках x=0; 1 ∈ (-2;4) tga<0.

На промежутке (4; 7) функция f(x) возрастает, значит на этом промежутке f'(x)>0, а это и есть тангенс угла наклона касательной к графику (tga = f'(x)). Следовательно в точке x=6 ∈ (4;7) tga>0.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представьте трехчлен в виде квадрата двучлена х²-10х+25
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

joini09
catsk8
ogonizoloto
Ka-shop2791
buslavgroupe
ПаничерскийЕлена
zoosalon-hollywood5
tarhan1221
Пимкина Сергеевич
filantropagv4
Vadim443
volk88882
korolev-comitet8825
vikashop269
marat7