SERGEI124
?>

10 класс. дано: плоскости альфа и бета пересекаются по прямой с. прямые а и б принадлежат плоскостям альфа и бета. а параллельна б. доказать: а параллельна с.

Алгебра

Ответы

yuraotradnov
Для доказательства того, что прямая а параллельна прямой с, нам понадобится использовать свойство плоскостей и прямых.

1. Предположим, что прямая а не параллельна прямой с. Тогда они пересекаются в какой-то точке М.

2. Рассмотрим треугольник МАС, где А и С - точки пересечения прямой а с прямой с и лежат в плоскости альфа. Так как по условию прямая а принадлежит плоскости альфа, то точка М тоже лежит в этой плоскости.

3. Поскольку прямая с также лежит в плоскости альфа (по определению пересечения плоскостей), то все три точки М, А и С принадлежат плоскости альфа.

4. Теперь рассмотрим треугольник МБС, где Б - точка пересечения прямой б с прямой с и лежит в плоскости бета. Так как прямая б принадлежит плоскости бета, то и точка Б лежит в этой плоскости.

5. Однако, так как точки М, А и С принадлежат плоскости альфа, а точка Б принадлежит плоскости бета, то по условию пересечения плоскостей плоскости альфа и бета должны пересекаться по прямой с.

6. Получаем противоречие: точка М не может одновременно принадлежать плоскости альфа и плоскости бета, так как прямая с должна лежать только на пересечении этих плоскостей.

7. Из этого следует, что наше предположение было неверным, и прямая а должна быть параллельной прямой с.

Таким образом, мы доказали, что если прямые а и б принадлежат плоскостям альфа и бета соответственно, прямая а параллельна прямой б, а прямая а пересекается с прямой с, то прямая а также будет параллельна прямой с.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

10 класс. дано: плоскости альфа и бета пересекаются по прямой с. прямые а и б принадлежат плоскостям альфа и бета. а параллельна б. доказать: а параллельна с.
Ваше имя (никнейм)*
Email*
Комментарий*