y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня d> 0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
d=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9> 0
8k< 9
k< 9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней d< 0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
d=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)< 0
1< k< 5
пересекаем k< 9/8 и 1< k< 5 - ответ 1< k< 9/8
ответ 1< k< 9/8
Поделитесь своими знаниями, ответьте на вопрос:
Выполните действия 2х²\х²-4 - 2х\х+2
ответ:
объяснение:
2x²/(x²- 4) - 2x/(x + 2) =
2x²/(x-2)(x+2) - 2x/(x+2) =
(2x² - 2x×(x-2)) / (x+2)(x-2) =
(2x² - 2x² + 4x) / (x+2)(x-2) =
4x / (x+2)(x-2) =
4x / x² - 4