Значение функции это у, подсталяем значение у=4 и находим а:
4=-а+1, а=-4+1=-3
ответ: а=-3
Пусть x - сумма всех учеников в первой группе до перехода, а y - количество учеников в этой группе. Тогда:
x/y = 22
Пусть k - сумма всех учеников во второй группе до перехода, а l - количество учеников в этой группе. Тогда:
k/l = 45
Известно, что при переходе ученика из второй группы в первую, средний у обоих групп повысился на 1, то есть:
(x+n)/(y+1)=23
(k-n)/(l-1)=46
Где n - количество ученика, который перешёл из второй группы в первую. Выразим n в обеих формулах:
n = 23(y+1)-x
n = -46(l-1)+k
Приравняем правые части этих уравнений:
23(y+1)-x = -46(l-1)+k
23y+23-x = k-46l+46
x и k мы можем выразить из двух первых формул, то есть:
x = 22y
k = 45l
Подставим правые части данных уравнений в уравнение выше:
23y+23-x = k-46l+46
23y+23-22y = 45l-46l+46
y+23 = 46-l
y+l = 46-23
y+l = 23
Поскольку y - количество учеников в первой группе, а l - количество учеников во второй группе, то y + l = 23 ученика в обеих группах.
23 ученика в обеих группах
Объяснение:
у=-1/2х^2+х-1
Коэффициент перед х² отрицательный,значит ветви параболы направлены вниз. Число по модулю меньше 1. значит парабола "шире" параболы Х².Парабола имеет максимум.находим точки на оси Х.
у=0=-1/2х^2+х-1 *2
0=-х²+2х-2 ищем корни (-2±√(4-4*(-1)(-2))/(2*(-1)) =(-2±√(-4))/(-2)корней нет. Значит парабола целиком ниже оси Х.
Х вершины равен -в/2а=-1/(-1)=1
У вершины равен У=-1/2+1-1 =-1/2
(1;-1/2) вершина.
Строим таблицу х -1 0 1 2 3
у -2,5 -1 -0,5 -1 -2,5
Точка пересечения с осью У при Х=0 у= 0+0-1 =-1 (0;-1)
Теперь наносим эти точки на оси координат и соединяем плавной кривой. Свойства. Возрастает при х∠1 ,убывает при 1∠х .
отрицательна при всех значениях Х. вершина-точка максимума.
Поделитесь своими знаниями, ответьте на вопрос:
Дана функция y=−a+1. при каких значениях a значение функции равно 4?
y=−a+1
-a+1=4
-a=4-1
-a=3 /:(-1)
a= - 3