Coverplus30
?>

Определите, принадлежит ли точка с координатами (-3; -18) графику функции y=-2x^2. напишите решение и ответ.

Алгебра

Ответы

Жуков219
Подставляешь вместо х -3 , вместо у -18. если получается верное равенство, значит точка лежит на графике
tol1974656
Ть опервый использование свойств арифметической прогрессии)
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии

a_1=-111;d=1;S_n=339
S_n=\frac{2a_1+(n-1)*d}{2}*n
x=a_n=a_1+(n-1)*d
339=(2*(-111)+(n-1)*1)n:2
339*2=(n-222-1)n
n^2-223n-678=0
D=(-223)^2-4*1*(-678)=52441=229^2
n_1=\frac{223-229}{2*1}
- не подходит, количество членов прогрессии не может быть отрицательным
n_2=\frac{223+229}{2*1}=226
n=226
x=-111+(226-1)*1=114
ответ: 114

второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)

далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114
dsnewline

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени:  без всяких причудливых вещей вроде  и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:  
Не так уж редко можно встретить греческие буквы:  – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»: 

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения 

Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа  , не спешите в страхе закрывать задачник, в конце-концов, вместо  можно нарисовать солнце, вместо  – птичку, а вместо  – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определите, принадлежит ли точка с координатами (-3; -18) графику функции y=-2x^2. напишите решение и ответ.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Рафаэль633
elenasnikitina84
bagramyansvetlana
smokestylemos
Galinova2911
adel25159
iraira761
rinan2013
Lenamihluk50
olelukoya4
sigidinv
Leonidovich_Elena771
gusrva3001
Nonstop788848
Игоревна