ответ: Минимум (-3;-1). Рост функции на интервале (-3;+∞). Функция убывает на промежутке (-∞;-3)
Объяснение:
Наименьшее значение:
Перед нами уравнение параболы. Известно, что экстремальное значение параболы достигается при (здесь b - коэффициент при x, а а - коэффициент при x^2)
Находим x:
x = -3 ⇒ подставляем это значение в функцию ⇒ y = -1 (данный y - минимум, которого может достичь функция)
Точка минимума - (-3;-1)
Промежуток, на котором функция возрастает:
Понятно, что данная парабола ветвями вверх, так как . Значит, функция возрастает после прохождения своего минимума:
Рост функции:
x ∈ (-3; +∞)
Промежуток на котором функция убывает:
Функция убывает пока не достигнет своего минимума
Уменьшение функции:
x ∈ (-∞; -3)
ответ: Минимум (-3;-1). Рост функции на интервале (-3;+∞). Функция убывает на промежутке (-∞;-3)
Объяснение:
Наименьшее значение:
Перед нами уравнение параболы. Известно, что экстремальное значение параболы достигается при (здесь b - коэффициент при x, а а - коэффициент при x^2)
Находим x:
x = -3 ⇒ подставляем это значение в функцию ⇒ y = -1 (данный y - минимум, которого может достичь функция)
Точка минимума - (-3;-1)
Промежуток, на котором функция возрастает:
Понятно, что данная парабола ветвями вверх, так как . Значит, функция возрастает после прохождения своего минимума:
Рост функции:
x ∈ (-3; +∞)
Промежуток на котором функция убывает:
Функция убывает пока не достигнет своего минимума
Уменьшение функции:
x ∈ (-∞; -3)
Поделитесь своими знаниями, ответьте на вопрос:
Решить систему уравнений методом подстановки: 2х-у=3 и 6х+2у=4
2х-у=3
6х+2у=4
выразим из первого уравнения У и подставим во второе:
2х-у=3
у=2х-3
6х+2(2х-3)=4
6х+4х-6=4
10х=10
х=1
у=2х-3=2*1-3= -1
ответ: х=1; y= -1