md-masya
?>

Катер по течению за 6 ч. проплыл такое же расстояние, которое проплывает за 10 ч. против течения. скорость течения реки равна 3 км/ч. вычисли скорость катера в стоячей воде.

Алгебра

Ответы

diana-kampoteks
Можно решить двумя Через тригонометрический круг;
2)Аналитически
По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.

№1. Тригонометрический круг
Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:

150<sinx<30

P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)

№2. Аналитический
Рассмотрим уравнение:

Решая уравнение, получим:

Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2.
Опять же, отсюда вытекает двойное неравенство:

150<sinx<30
bufetkonfet53
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т : K = 31 \ .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Катер по течению за 6 ч. проплыл такое же расстояние, которое проплывает за 10 ч. против течения. скорость течения реки равна 3 км/ч. вычисли скорость катера в стоячей воде.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Svetlaru70
kuliba
gip5362
Gesper63
proporcia46
Овчинников_Грузман
evgeniy1988486
Yuliya_Viktoriya316
Igor1406
Viktoriya
Узлиян Фурсов1488
iptsr4968
Yurevna-Anatolevna
LidiyaBorzikh
ainetdinovsnab