Катер по течению за 6 ч. проплыл такое же расстояние, которое проплывает за 10 ч. против течения. скорость течения реки равна 3 км/ч. вычисли скорость катера в стоячей воде.
Можно решить двумя Через тригонометрический круг; 2)Аналитически По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.
№1. Тригонометрический круг Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:
150<sinx<30
P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)
№2. Аналитический Рассмотрим уравнение:
Решая уравнение, получим:
Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2. Опять же, отсюда вытекает двойное неравенство:
150<sinx<30
bufetkonfet53
26.11.2020
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т :
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Катер по течению за 6 ч. проплыл такое же расстояние, которое проплывает за 10 ч. против течения. скорость течения реки равна 3 км/ч. вычисли скорость катера в стоячей воде.
2)Аналитически
По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.
№1. Тригонометрический круг
Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:
150<sinx<30
P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)
№2. Аналитический
Рассмотрим уравнение:
Решая уравнение, получим:
Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2.
Опять же, отсюда вытекает двойное неравенство:
150<sinx<30