(sina+cosa)^2 + (sina+ cosa^2 -2=2( sina+cosa)^2= = 2(sin^2 a +2sinacosa + cos^2 a ) -2 = 2(1+2sinacosa)-2=2 + 4sinacosa -2= = 4sinacosa Если уже изучили формулы двойного аргумента, то в ответе поkучим 2sin2a При решении воcпользовались формулой sin^2 a+cos^2 а =1 3) Упростить: sin^2 a +cos^2 a +ctg^2a= 1+ctg^2a=1/ sin^2 a. 4) ctga=cosa/sina. Sina нам известен, осталось найти сosa: =+- V(1-cos^2 a) =+- V( 1-sin^2a)=+-V(1-1/16)= +-V15/16 ( V- корень квадратный. Т.к cosa во второй четверти отрицателен,то из двух знаков +- оставим только минус. Итак cosa= - V15/4 (в этом выражении V относится только к числителю ) ctga=-V15/4:1/4 после сокращения на 4 получим ответ ctg= -V15 2) Разделим почленно все слагаемые на sin^2acos^2b получим дробь sin^2a+sin^2b-sin^2a*sin^2b+cos^2a*cos^2b = sin^2acos^2b 1/cos^2b+tg^2b-tg^2b+ctg^2a=1/cos^2b+ctg^2 a
KonovalovKonstantinovna1306
24.03.2023
Ищем х1 и х2 x1 = (3+√13/)4 x2 = (3 -√13)/4 Новые корни: х1 -2 = (3 + √13)/4 - 2 = (3 + √13 - 8)/4 = (-5 +√13)/4 = (√13 - 5)/4 х2 - 2 = (3 - √13)/4 - 2 = (3 - √13 - 8)/4 = (-5 -√13)/4 Найдём сумму новых корней. (√13 - 5)/4 + (-5 - √13)/4 = - 10/4 = -5/2. Найдём произведение этих корней (√13 -5)/4·(-5 - √13)/4 = 12/4 = 3 По т. Виета сумма корней , взятая с другим знаком - это второй коэффициент квадратного уравнения, произведение корней- это свободный член. Пишем новое квадратное уравнение. x^2 +5/2 x +3=0|·2 2x^2 +5x +6 = 0
a2+3a+3a²-2a-9-9a