Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
1) не является; 2) не является
Объяснение:
1) Является ли у функцией х, если у - это число десятых в десятичной записи числа х?
У некоторых чисел существует 2 формы десятичной записи: с 0 и с 9 в периоде.
Например, для числа 1 существуют 2 формы: и . В первом случае число десятых равно девяти, а во втором - нулю. То есть существует значение переменной , которому соответствуют несколько значений .
Значит, у не является функцией х.
2) Является ли x функцией y, если у - это число десятых в десятичной записи числа х?
Рассмотрим . Но число десятых у чисел и равно нулю. То есть существует значение переменной , которому соответствуют несколько значений (например, ).
Значит, x не является функцией y.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значения выражения: (c^2+3)(c-9)-c^2(c-6) при с= -5
Подставляем - 5, получаем:(-5^2+3)(-5-9)-5^2(-5-6)
Решаем:(25+3)(-14)-25(-11)=28*(-14)+275=-117
ответ : - 117