Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
18/(20+х) + 20/(20-х) = 2
20 · (20 + х) + 18 · (20 - х) = 2 · (20 + х) · (20 - х)
400 + 20х + 360 - 18х = 2 · (20² - х²)
760 + 2х = 800 - 2х²
760 + 2х - 800 + 2х² = 0
2х² + 2х - 40 = 0
х² + х - 20 = 0
D = b² - 4ac = 1² - 4 · 1 · (-20) = 1 + 80 = 81
√D = √81 = 9
х₁ = (-1-9)/(2·1) = (-10)/2 = -5 (не подходит, так как < 0)
х₂ = (-1+9)/(2·1) = 8/2 = 4
ответ: 4 км/ч - скорость течения реки.
Проверка:
18/(20+4) + 20/(20-4) = 0,75 + 1,25 = 2 ч - время движения
Поделитесь своими знаниями, ответьте на вопрос:
Серед даних прямих укажіть пари паралельних1) 3х +y+7 = 0;
Во 2 ёмкости х л кваса, тогда в 1 ёмкости его будет (х+4) л .
Переливаем из 1 ёмкости 13 л, тогда в 1 ёмкости останется
(х+4-13)=(х-9) л кваса, а во второй ёмкости станет (х+13) л кваса.
Причём в 2 раза больше, чем осталось в 1 ёмкости - это 2(х-9) .
Составим уравнение: 2(х-9)=х+13
2х-18=х+13
2х-х=13+18
х=31 во 2 ёмкости
х+4=35 в 1 ёмкости