Запишите многочлен 4- ой степени, корнями которого являются числа :
если число а-корень уравнения то х-а=0
воспользовавшись этим свойством составим уравнения
1) - 2,0,2,3
(x+2)(x-0)(x-2)(x-3)=0
x(x-2)(x+2)(x-3)=0
x(x²-4)(x-3)=0
(x²-4)(x²-3x)=0
перемножим скобки
x⁴-4x²-3x³+12x=0
приведем к стандартному виду
x⁴-3x³-4x²+12x=0
2) - 3,-1,1,3
(x+3)(x+1)(x-1)(x-3)=0
(x²-9)(x²-1)=0
x⁴-9x²-x²+9=0
x⁴-10x²+9=0
3) - 3,-1,0,3
(x+3)(x+1)(x-0)(x-3)=0
(x²-9)*x*(x+1)=0
(x²-9)(x²+x)=0
x⁴-9x²+x³-9x=0
x⁴+x³-9x²-9x=0
4) -2,1,2,5
(x+2)(x-1)(x-2)(x-5)=0
(x²-4)(x-1)(x-5)=0
(x²-4)(x²-6x+5)=0
x⁴-4x²-6x³+24x+5x²-20=0
x⁴-6x³+x²+24x-20=0
пусть первое число - n, тогда второе n+1(так как по условию, у нас последовательные натуральные числа). Ну и опираясь на условие составим уравнение:
n(n+1) = 1.25n²
n² + n - 1.25n² = 0
-0.25n² + n = 0
n(-0.25n + 1) = 0
n = 0 или -0.25n + 1 = 0
-0.25n = -1
n = 4
Рассуждаем дальше. Первый корень сразу отбрасываю, так как 0 не является натуральным числом. таким образом, меньшее из чисел равно 4. Тогда второе число равно 4+1 = 5. Речь шла о числах 4 и 5.
Поделитесь своими знаниями, ответьте на вопрос:
хитрые мудрецы. в комнате на доске записаны 6 двоичных цифр(нули и единицыдва мудреца не знают заранее, какие это цифры, но могут договориться между собой о согласованных действиях.после этого первый заходит в комнату и закрывает 3 знака.о чем договорились мудрецы, если второй, зайдя в комнату и взглянув на доску , немедленно смог назвать закрытые цифры.
Закрыть нули или единицы
Объяснение:
И так можно сказать какие числа он закрыл