verynzik66525
?>

10 класс. используя метод замены, решите систему уравнение​

Алгебра

Ответы

Serezhkin

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

metegina4
1)
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.

2) 
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.

3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной  t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2  не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.

4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0  ;  * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2  не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒    x =(-1)^n *(π/6) + πn , n∈Z .

5).   2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3²  * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;

x =±π/3 +2πn , n∈Z .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

10 класс. используя метод замены, решите систему уравнение​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kokukhin
kifstd
kol-nat26
Fedorovich_Aleksandrovich685
mokeevahelena
vypolga1347
abuley
abakas235
Александрович Василий
Larisa-0888716
festjob
skryabinamaria
pereverzev
АлександровнаВладлен243
Yevgenevich_Chipura-Nikolaeva
Решить через замену неравенство.