Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х). Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа 50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0 (только х≠18 , чтобы знаменатель не был равен нулю) 900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0 1044 -42х - (972-54х+54х-3х²)=0 1044 - 42х -972 +54х -54х +3х²=0 3х²-42х+72=0 разделим всё на 3,каждый член, для облегчения решения х²- 14х+ 24 =0 Д=196-4·1·24=100 х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ. ответ: х=2км/ч
lele52
20.07.2020
Пусть v1 км/ч - скорость лодки, а v2 км/ч - скорость течения. Тогда при следовании лодки по течению её скорость составила v1+v2 км/ч, а при следовании против течения - v1-v2 км/ч. Так как 1 час 24 минуты = 1,4 часа, то по условию 30/(v1+v2)=1,2 и 30/(v1-v2)=1,4. Получена система уравнений:
30/(v1+v2)=1,2 30/(v1-v2)=1,4
v1+v2=30/1,2=25 v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7 v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
Объяснение:
В каком виде представлены выражения, в таком виде и будем решать:
(4ас^2)^3 •(0,5а^3 •с)^2=(2^2)^3 •(1/2)^2 •а^(3+3•2) •с^(2•3+2)=2^(2•3-2) •а^9 •с^8=2^4 •а^9 •с^8=16а^9 •с^8
(2/(3х^2 •у^3))^3 •(-9х^4)^2=8/3^3 •(-(3^2))^2 •х^(-2•3+4•2) •у^(-3•3)=8•3^(-3+2•2) •х^(-6+8) •у^(-9)=(8•3)/(х^2 •у^9)=24/(х^2 •у^9)
-(-х^2 •у^4)^4 •(6х^4 •у)^2=-36х^(2•4+4•2) •у^(4•4+2)=-36х^(8+8) •у^18=-36х^16 •у^18
(-10а^3 •b^2)^5 •(-0,2ab^2)^5=(-10)^5 •(-2/10)^5 •a^(3•5+5) •b^(2•5+2•5)=32•10^(5-5) •a^20 •b^(10+10)=32a^20 •b^20