Так как последняя цифра четна и число кратно 5 , то она равна нулю , а само число кратно 70 , запишем его в виде : A = 49000 +100x +10y , где x и y - число сотен и десятков числа А , х≠0 , так как двух нулей быть не должно , 49000 кратно 70 ⇒ 100х+10y также кратно 70 ( оно равно А -49000) и должно быть наименьшим , рассмотрим трехзначные числа, кратные 70 -140 , 210 , 280 , 350 и т .д., наименьшее число из этой последовательности с различными четными цифрами равно 280 ⇒ А =49280
ответ :49280
Поделитесь своими знаниями, ответьте на вопрос:
Пункт вело прокату пропонує 70 велосипедів для дорослих і 50 велосипедів для дітей. Визначте скільки у клієнта варіантів замовити:1) один велосипед для дитини2) один велосипед для дорослого або один велосипед для дитини3) один велосипед для дорослого та один велосипед для дитини
Цель задачи найти наименьшее число, которое делится на 35.
Разложим число 35 = 5 * 7,
значит число 49*** должно одновременно делится и на 5 и на 7.
Рассуждаем.
1) Признак делимости числа 49*** на 5 это такое число, у которого последняя цифра делится на 5. Из чётных чисел наименьшее это - 0.
Предварительно число имеет вид 49**0.
2) Рассмотрим теперь признак делимости на 7.
По определению число делится на 7 если результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.
Т.к. последняя цифра 0, то достаточно рассмотреть только число 49**.
Запишем иначе: 49ХУ, тогда из определения
(49Х - 2*У) = - этот полученный результат доложен делится на 7.
Из выражения видно, что наименьшее чётная цифра, которая будет обеспечивать признак делимости на 7 это - 0 , т.е. число 4900
тогда
490 - 2 * 0 = 490 - это число делится на 7.
Получаем наименьшее число 49000 - которое делится на 35, но по условию задачи цифры должны быть различные.
Тогда ближайшие числа которые должны делится на 7 это:
4922; 4924; 4926 и 4928
Проверим делимость на 7
492 - 2*2 = 488 ⇒ 48 - 2 * 8 = 32 не делится на 7
492 - 2*4 = 484 ⇒ 48 - 2 * 4 = 40 не делится на 7
492 - 2*6 = 480 ⇒ 48 - 2 * 0 = 48 не делится на 7
492 - 2*8 = 476 ⇒ 47 - 2 * 6 = 35 делится на 7
Окончательно запишем 49280 наименьшее число с различными цифрами, которое делится на 35
ответ: 49280 - наименьшее число которое делится на 35.